Impulse Excitation of Piezoelectric Patch Actuators for Modal Analysis

Author(s):  
V. Ruffini ◽  
T. Nauman ◽  
C. W. Schwingshackl
2018 ◽  
Vol 217 ◽  
pp. 02001
Author(s):  
Mohd Hafiz Abdul Satar ◽  
Ahmad Zhafran Ahmad Mazlan

Hysteresis is one of the non-linearity characteristics of the piezoelectric material. This characteristic is important to be characterized since it can affect the performance of the piezoelectric material as sensor or actuator in many applications. In this study, the model of the coupled aluminium beam with single piezoelectric patch material is constructed to investigate the hysteresis effect of the piezoelectric material to the whole beam structure. A P-876 DuraActTM type piezoelectric patch material is used in modelling of the piezoelectric actuator. Firstly, the modal analysis of the coupled beam-piezoelectric actuator is determined to get the natural frequencies and mode shapes. Then, the piezoelectric patch material is investigated in terms of actuator by given a sinusoidal voltage excitation and output in terms of deflection, stress and strain of the piezoelectric actuator are investigated. From the results, it is clear that, the coupled beam-piezoelectric material is affected by the hysteresis of the piezoelectric material and the natural frequencies of the beam structure. This characteristic is important for the piezoelectric actuator manufacturer and by providing the correction algorithm, it can improve the performance of the piezoelectric actuator for many applications.


2018 ◽  
Vol 174 ◽  
pp. 02010 ◽  
Author(s):  
Krystian Jurowski ◽  
Alina Kaleta ◽  
Bronisław Krępa

In this work, the evaluation of measurement uncertainty of concrete dynamic elastic modulus testing method was conducted. The dynamic test was carried out using impulse excitation and modal analysis method, which can be used to determine the compressive strength of concrete in a non-destructive way. The tests were conducted using concrete samples in order to determine the practical usefulness of the mentioned method. It has been demonstrated that the impulse excitation and modal analysis method is characterized by very good repeatability.


1980 ◽  
Vol 102 (2) ◽  
pp. 357-368
Author(s):  
H. A. Nied

A modal analysis was conducted on gas turbine buckets using a digital Fourier analyzer. This digital test/computer system measures a set of frequency response functions for broadband impulse excitation at successive locations on the bucket airfoil. From the set of frequency response functions, the analyzer computes the modal parameters used to determine the natural frequencies, critical damping ratio and mode shapes of the turbine buckets. An animated display of the mode shapes for a discrete experimental model graphically revealed compound modes due to coupling. The test has shown that the digital modal analysis using the impulse excitation technique is a rapid and precise experimental method to determine the modal parameters of turbine buckets with a high degree of repeatability.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020100
Author(s):  
Nasser Heydari ◽  
Panayiotis Diplas ◽  
J. Nathan Kutz ◽  
Soheil Sadeghi Eshkevari

2015 ◽  
Vol 39 (1) ◽  
pp. 145-149 ◽  
Author(s):  
Ewa B. Skrodzka ◽  
Bogumił B.J. Linde ◽  
Antoni Krupa

Abstract Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).


Sign in / Sign up

Export Citation Format

Share Document