good repeatability
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 123)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Vol 8 ◽  
Author(s):  
Fang Liu ◽  
Jing Zhao ◽  
Tian Han ◽  
Yang Shen ◽  
Meng Li ◽  
...  

Purpose:To explore the feasibility and repeatability of a novel glasses-free display combined with random-dot stimulus and eye-tracking technology for screening stereopsis in adults.Methods:A total of 74 patients aged 18–44 years were recruited in this study (male: female, 32:42), including 33 patients with high myopia [≤ -6.0 diopters (D)] and 41 patients with moderate-to-low myopia (>-6.0 D). Stereopsis was measured using glasses-free, polarized, and Titmus stereotests. All patients completed a visual fatigue questionnaire after the polarized stereotest and glasses-free test. Kendall's W and Cohen's Kappa tests were used to evaluate repeatability and consistency of the glasses-free stereotest.Results:The stereotest results using the glasses-free monitor showed strong repeatability in the three consecutive tests (W = 0.968, P < 0.01) and good consistency with the polarized stereotest and Titmus test results (vs. polarization: Kappa = 0.910, P < 0.001; vs. Titmus: Kappa = 0.493, P < 0.001). Stereopsis levels of the high myopia group were significantly poorer than those of the moderate-to-low myopia group in three stereotest monitors (all P < 0.05). There was no significant difference in visual fatigue level between the polarized and the glasses-free display test (P = 0.72). Compared with the polarized test, 56.76% of patients preferred the glasses-free display and found it more comfortable, 20.27% reported both tests to be acceptable.Conclusions:In our adult patients, the new eye-tracking glasses-free display system feasibly screened stereopsis with good repeatability, consistency, and patient acceptance.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yu Zhao ◽  
Xin Dong ◽  
Zhi Wang ◽  
Rui Dong ◽  
Ren Bu ◽  
...  

Modified Tabusen-2 decoction (MTBD) is traditional Chinese Mongolia medicine, mainly used to treat osteoporosis. However, the precise material basis of this prescription is not yet fully elucidated. Herein, we establish an HPLC-Q-Exactive MS/MS spectrometer method with four-step characteristic ion filtering (FSCIF) strategy to quickly and effectively identify the structural features of MTBD and determine the representative compounds content. The FSCIF strategy included database establishment, characteristic ions summarization, neutral loss fragments screening, and secondary mass spectrum fragment matching four steps. By using this strategy, a total of 143 compounds were unambiguously or tentatively annotated, including 5 compounds which were first reported in MTBD. Nineteen representative components were simultaneously quantified with the HPLC-Q-Exactive MS/MS spectrometer, and it is suitable for eight batches of MTBD. Methodology analysis showed that the assay method had good repeatability, accuracy, and stability. The method established above was successfully applied to assess the quality of MTBD extracts. Collectively, our findings enhance our molecular understanding of the MTBD formulation and will allow us to control its quality in a better way. At the same time, this study can promote the development and utilization of ethnic medicine.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 86
Author(s):  
Xue Nie ◽  
Peihong Deng ◽  
Haiyan Wang ◽  
Yougen Tang

A glassy carbon electrode (GCE) was modified with nitrogen-doped carbon materials (NC) and polyethyleneimine (PEI) composites to design an electrochemical sensor for detecting 4-nitrophenol (4-NP). The NC materials were prepared by a simple and economical method through the condensation and carbonization of formamide. The NC materials were dispersed in a polyethyleneimine (PEI) solution easily. Due to the excellent properties of NC and PEI as well as their synergistic effect, the electrochemical reduction of the 4-NP on the surface of the NC–PEI composite modified electrode was effectively enhanced. Under the optimized conditions, at 0.06–10 μM and 10–100 μM concentration ranges, the NC–PEI/GCE sensor shows a linear response to 4-NP, and the detection limit is 0.01 μM (the signal-to-noise ratio is three). The reliability of the sensor for the detection of 4-NP in environmental water samples was successfully evaluated. In addition, the sensor has many advantages, including simple preparation, fast response, high sensitivity and good repeatability. It may be helpful for potential applications in detecting other targets.


Biosensors ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Rocco Cancelliere ◽  
Alessio Di Tinno ◽  
Antonino Cataldo ◽  
Stefano Bellucci ◽  
Laura Micheli

The use of carbon nanomaterials (CNMs) in sensors and biosensor realization is one of the hottest topics today in analytical chemistry. In this work, a comparative in-depth study, exploiting different nanomaterial (MWNT-CO2H, -NH2, -OH and GNP) modified screen-printed electrodes (SPEs), is reported. In particular, the sensitivity, the heterogeneous electron transfer constant (k0), and the peak-to-peak separation (ΔE) have been calculated and analyzed. After which, an electrochemical amperometric sensor capable of determining uric acid (UA), based on the nano-modified platforms previously characterized, is presented. The disposable UA biosensor, fabricated modifying working electrode (WE) with Prussian Blue (PB), carbon nanotubes, and uricase enzyme, showed remarkable analytical performances toward UA with high sensitivity (CO2H 418 μA μM−1 cm−2 and bare SPE-based biosensor, 33 μA μM−1 cm−2), low detection limits (CO2H 0.5 nM and bare SPE-based biosensors, 280 nM), and good repeatability (CO2H and bare SPE-based biosensors, 5% and 10%, respectively). Moreover, the reproducibility (RSD%) of these platforms in tests conducted for UA determination in buffer and urine samples results are equal to 6% and 15%, respectively. These results demonstrate that the nanoengineered electrode exhibited good selectivity and sensitivity toward UA even in the presence of interfering species, thus paving the way for its application in other bio-fluids such as simple point-of-care (POC) devices.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1531
Author(s):  
Junna Zhang ◽  
Cheng Lei ◽  
Ting Liang ◽  
Ruifang Liu ◽  
Zhujie Zhao ◽  
...  

In this paper, to address the problems of large blood draws, long testing times, and the inability to achieve dynamic detection of invasive testing for diabetes, stemming from the principle that type 1 diabetic patients exhale significantly higher levels of acetone than normal people, a FAIMS-MEMS gas sensor was designed to detect acetone, which utilizes the characteristics of high sensitivity, fast response, and non-invasive operation. It is prepared by MEMS processes, such as photolithography, etching, and sputtering, its specific dimensions are 4000 μm in length, 3000 μm in width and 800 μm in height and the related test system was built to detect acetone gas. The test results show that when acetone below 0.8 ppm is introduced, the voltage value detected by the sensor basically does not change, while when acetone gas exceeds 1.8 ppm, the voltage value detected by the sensor increases significantly. The detection accuracy of the sensor prepared by this method is about 0.02 ppm/mV, and the voltage change can reach 1 V with a response time of 3 s and a recovery time of 4 s when tested under 20 ppm acetone environment; this has good repeatability and stability, and has great prospects in the field of non-invasive detection of type 1 diabetes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weicong Lu ◽  
Rongyuan Ji ◽  
Wenzhi Ding ◽  
Yuyin Tian ◽  
Keli Long ◽  
...  

Purpose: To evaluate the repeatability of a multispectral-based refractor in central and peripheral refraction measurement, and to assess the agreement of such measurements with objective refraction (OR) and subjective refraction (SR) in patients with myopia.Methods: A total of 60 subjects were recruited in this prospective research. Patients were divided into three groups according to the refractive error. Next, the central and peripheral refraction parameters were measured using multispectral refractive tomography (MRT) before and after cycloplegia. In addition, OR and SR measurements were also performed. The intraobserver repeatability was analyzed using within-subject standard deviation (Sw), test–retest repeatability (TRT), and intraclass correlation coefficient (ICC). Agreement was evaluated using Bland-Altman plot and 95% limits of agreement (LoA).Results: The ICC value of central and peripheral refraction were all higher than 0.97 with or without cycloplegia. The peripheral refraction in the nasal, temporal, superior, and inferior quadrants was slightly worse than other parameters, with the largest error interval being 1.43 D. The 95% LoA of the central refraction and OR or SR ranged from −0.89 to 0.88 D and −1.24 to 1.16 D without cycloplegia, respectively, and from −0.80 to 0.42 D and −1.39 to −0.84 D under cycloplegia, respectively.Conclusions: The novel multispectral refraction topography demonstrated good repeatability in central and peripheral refraction. However, the refraction in the nasal, temporal, superior, and inferior quadrants were not as good as that of central and circle peripheral refraction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jakub Mlodawski ◽  
Marta Mlodawska ◽  
Justyna Plusajska ◽  
Karolina Detka ◽  
Agata Michalska ◽  
...  

AbstractStrain elastography of the uterine cervix may be useful in the diagnosis and prediction of obstetric complications. The inability to obtain quantitative results, with only the possibility of visual semiquantitative evaluation of the obtained elastograms, has been the limitation of the method thus far. E-Cervix is a software program that uses intrinsic compression to excite tissue and allows the evaluation of quantitative parameters on the basis of pixel distribution in an elastogram. The aim of this study was to assess the repeatability and reproducibility of quantitative cervical strain elastography (E-Cervix) of the uterine cervix and to assess the correlation of the obtained parameters with selected clinical features of patients in the third trimester of pregnancy. In total, 222 patients participated in the study. We assessed 5 ultrasound parameters: elasticity index (ECI), hardness ratio (HR), internal os strain (IOS), external os strain (EOS) and IOS/EOS ratio. Each study was performed according to a predetermined standardized protocol. For all assessed elastographic parameters, we obtained good intra- and interobserver reproducibility. The interclass correlation coefficient (ICC) ranged from 0.77 to 0.838 for intraobserver variability and from 0.771 to 0.826 for interobserver variability. We demonstrated a significant correlation of some obtained elastographic parameters with the basic clinical features of patients, such as age, the number of previous caesarean sections, pregnancy weight and BMI. In each case, the correlation was very low. Quantitative elastographic assessment with the use of E-Cervix is characterized by good repeatability. Some clinical features may affect the value of the parameters obtained. The clinical relevance of this interference requires further investigation.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2994
Author(s):  
Monica Tiboni ◽  
Azzurra Filippini ◽  
Cinzia Amici ◽  
David Vetturi

The design, prototyping and validation of an innovative test bench for the characterization and the hysteresis measurement of flexion sensors are presented in this paper. The device, especially designed to test sensors employed in the biomedical field, can be effectively used to characterize also sensors intended for other applications, such as wearable devices. Flexion sensors are widely adopted in devices for biomedical purposes and in this context are commonly used in two main ways: to measure movements (i) with fixed radius of curvature and (ii) with variable radius of curvature. The test bench has been conceived and designed with reference to both of these needs of use. The technological choices have been oriented towards simplicity of manufacture and assembly, configuration flexibility and low cost of realization. For this purpose, 3D printing technology was chosen for most of the structural components of the device. To verify the test bench performances, a test campaign was carried out on five commercial bending sensors. To characterize each sensor, the acquired measurements were analysed by assessing repeatability and linearity of the sensors and hysteresis of the system sensor/test bench. A statistical analysis was performed to study the positioning repeatability and the hysteresis of the device. The results demonstrate good repeatability and low hysteresis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3192
Author(s):  
Hao Xu ◽  
Liangjing Zhang ◽  
Aiwu Wang ◽  
Juan Hou ◽  
Xuhong Guo

Photochromic materials have attracted increasing attention. Here, we report a novel photo-reversible color switching system based on oxygen-vacancy-engineered MoOx nanostructures with water/N-methyl-2-pyrrolidone (NMP) as solvents. In this work, the system rapidly changed from colorless to blue under UV irradiation (360–400 nm) and slowly recovered its colorless state under visible light irradiation. The obtained oxygen vacancy-engineered MoOx nanostructures exhibited good repeatability, chemical stability, and cycling stability. Upon UV light irradiation, H+ was intercalated into layered MoOx nanostructures and the Mo6+ concentration in the HxMoOx decreased, while the Mo5+ concentration increased and increased oxygen vacancies changed the color to blue. Then, it recovered its original color slowly without UV light irradiation. What is more, the system was highly sensitive to UV light even on cloudy days. Compared with other reported photochromic materials, the system in this study has the advantage of facile preparation and provides new insights for the development of photochromic materials without dyes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Huanhuan Lu ◽  
Jinbo Xiao ◽  
Keyi Zhang ◽  
Zhenzhi Han ◽  
Yang Song ◽  
...  

Abstract Background Parechoviruses (PeV-As), which constitute a new genus within the family Picornaviridae, have been associated with numerous localized outbreaks of serious diseases, such as coryza, pneumonia, maculopapular exanthem, and conjunctivitis. However, to the best of our knowledge, only a few laboratories worldwide conduct tests for the identification of this group of viruses. Therefore, in this study, we aimed to develop and validate a real-time RT-PCR assay for the identification of PeV-As. Methods To design and validate a real-time PCR primer–probe targeting the 5′-UTR region of PeV-As, the 5′-UTR sequences of PeV-As available in GenBank were aligned using the MUSCLE algorithm in MEGA v7.0. Thereafter, the highly conserved 5′-UTR region was selected, and its primer–probe sequence was designed using Primer Premier v5.0. This primer–probe sequence was then evaluated for specificity, sensitivity, and repeatability, and for its validation, it was tested using fecal samples from 728 healthy children living in Beijing (China). Results The PeV-A real-time RT-PCR assay detected only the RNA-positive standards of PeV-A genotypes (1–8, 14, 17, and 18), whereas 72 serotypes of non-PeV-A EV viruses were undetected. In addition, the VP1 region of these 11 PeV-A genotypes that tested positive were amplified using the primers designed in this study. Typing results indicated that eight, one, and two strains of the 11 were PeV-A1, PeV-A4, and PeV-A6, respectively. We also determined and presented the genetic characterization and phylogenetic analyses results corresponding to these 11 VP1 region sequences. Furthermore, real-time RT-PCR assay showed good sensitivity with LOD of 102 copies/μL. Positive results in eight parallel experiments at each concentration gradient from 107 copies/μL to 102 copies/μL, indicating good repeatability. Conclusion Our findings suggested that the real-time RT-PCR assay developed in this study can be applied for routine PeV-A identification. We detected PeV-A1, 4 and 6 genotypes in the 728 faecal samples using this method. Additionally, we believe that our results will serve as a foundation for further studies on PeV-As and facilitate the expansion of the gene sequence information available in GenBank.


Sign in / Sign up

Export Citation Format

Share Document