Enhanced Similarity Measure for Sparse Subspace Clustering Method

Author(s):  
Sabra Hechmi ◽  
Abir Gallas ◽  
Ezzeddine Zagrouba
Author(s):  
Ana Belén Ramos-Guajardo

AbstractA new clustering method for random intervals that are measured in the same units over the same group of individuals is provided. It takes into account the similarity degree between the expected values of the random intervals that can be analyzed by means of a two-sample similarity bootstrap test. Thus, the expectations of each pair of random intervals are compared through that test and a p-value matrix is finally obtained. The suggested clustering algorithm considers such a matrix where each p-value can be seen at the same time as a kind of similarity between the random intervals. The algorithm is iterative and includes an objective stopping criterion that leads to statistically similar clusters that are different from each other. Some simulations to show the empirical performance of the proposal are developed and the approach is applied to two real-life situations.


2021 ◽  
Author(s):  
Lili Fan ◽  
Guifu Lu ◽  
Yong Wang ◽  
Tao Liu

Author(s):  
Dong Wang ◽  
Shengge Shi ◽  
Xiao Bai ◽  
Xueni Zhang

TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge Luis Bacca ◽  
Henry Arguello

Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.


Sign in / Sign up

Export Citation Format

Share Document