Chaos Control and Synchronization

Author(s):  
Stephen Lynch
2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Lidong Liu ◽  
Jinfeng Hu ◽  
Huiyong Li ◽  
Jun Li ◽  
Zishu He ◽  
...  

It is of vital importance to exactly estimate the unknown parameters of chaotic systems in chaos control and synchronization. In this paper, we present a method for estimating one-dimensional discrete chaotic system based on mean value method (MVM). It is proposed by exploiting the ergodic and synchronization features of chaos. It can effectively estimate the parameter value, and it is more exact than MVM. Finally, numerical simulations on Chebyshev map and Tent map show that the proposed method has better performance of parameter estimation than MVM.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sunil Kumar ◽  
R.P. Chauhan ◽  
Shaher Momani ◽  
Samir Hadid

Purpose This paper aims to study the complex behavior of a dynamical system using fractional and fractal-fractional (FF) derivative operators. The non-classical derivatives are extremely useful for investigating the hidden behavior of the systems. The Atangana–Baleanu (AB) and Caputo–Fabrizio (CF) derivatives are considered for the fractional structure of the model. Further, to add more complexity, the authors have taken the system with a CF fractal-fractional derivative having an exponential kernel. The active control technique is also considered for chaos control. Design/methodology/approach The systems under consideration are solved numerically. The authors show the Adams-type predictor-corrector scheme for the AB model and the Adams–Bashforth scheme for the CF model. The convergence and stability results are given for the numerical scheme. A numerical scheme for the FF model is also presented. Further, an active control scheme is used for chaos control and synchronization of the systems. Findings Simulations of the obtained solutions are displayed via graphics. The proposed system exhibits a very complex phenomenon known as chaos. The importance of the fractional and fractal order can be seen in the presented graphics. Furthermore, chaos control and synchronization between two identical fractional-order systems are achieved. Originality/value This paper mentioned the complex behavior of a dynamical system with fractional and fractal-fractional operators. Chaos control and synchronization using active control are also described.


2021 ◽  
Vol 31 (07) ◽  
pp. 2150101
Author(s):  
Xu Zhang

The estimate of the ultimate bound for a dynamical system is an important problem, which is useful for chaos control and synchronization. In this paper, the estimated ultimate bound of a class of complex Lorenz systems is provided, which extends the parameter regions identified in the current literature on this problem. Based on these results, a kind of complex Lorenz-type systems is constructed, which might have many or infinitely many strange nonchaotic attractors, chaotic attractors, or an infinitely-many-scroll attractor.


2012 ◽  
Vol 49 (5) ◽  
pp. 051901
Author(s):  
张胜海 Zhang Shenghai ◽  
赵振华 Zhao Zhenhua ◽  
杨华 Yang Hua

Sign in / Sign up

Export Citation Format

Share Document