liu system
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 5)

H-INDEX

16
(FIVE YEARS 1)

2022 ◽  
Vol 9 ◽  
Author(s):  
Shunjie Li ◽  
Yawen Wu ◽  
Gang Zheng

In this paper, the adaptive control design is investigated for the chaos synchronization of two identical hyperchaotic Liu systems. First, an adaptive control law with two inputs is proposed based on Lyapunov stability theory. Secondly, two other control schemes are obtained based on a further analysis of the proposed adaptive control law. Finally, numerical simulations are presented to validate the effectiveness and correctness of these results.


Author(s):  
Fatiha Mesdoui ◽  
Nabil Shawagfeh ◽  
Adel Ouannas

This study considers the problem of control-synchronization for chaotic systems involving fractional derivative with a non-singular kernel. Using an extension of the Lyapunov Theorem for systems with Atangana-Baleanu-Caputo (ABC) derivative, a suitable control scheme is designed to achieve matrix projective synchronization (MP) between nonidentical ABC systems with different dimensions. The results are exemplified by the ABC version of the Lorenz system, Bloch system, and Liu system. To show the effectiveness of the proposed results, numerical simulations are performed based on the Adams-Bashforth-Mounlton numerical algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Yaoyu Wang ◽  
Ling Liu ◽  
Xinshan Cai ◽  
Chongxin Liu ◽  
Yan Wang ◽  
...  

In this paper, a new commensurate fractional-order chaotic oscillator is presented. The mathematical model with a weak feedback term, which is named hypogenetic flow, is proposed based on the Liu system. And with changing the parameters of the system, the hidden attractor can have no equilibrium points or line equilibrium. What is more interesting is that under the occasion that no equilibrium point can be obtained, the phase trajectory can converge to a minimal field under the lead of some initial conditions, similar to the fixed point. We call it the virtual equilibrium point. On the other hand, when the value of parameters can produce an infinite number of equilibrium points, the line equilibrium points are nonhyperbolic. Moreover than that, there are coexistence attractors, which can present hyperchaos, chaos, period, and virtual equilibrium point. The dynamic characteristics of the system are analyzed, and the parameter estimation is also studied. Then, an electronic circuit implementation of the system is built, which shows the feasibility of the system. At last, for the fractional system with hidden attractors, the finite-time synchronization control of the system is carried out based on the finite-time stability theory of the fractional system. And the effectiveness of the controller is verified by numerical simulation.


Author(s):  
Enzeng Dong ◽  
Mingfeng Yuan ◽  
Jigang Tong ◽  
Shengzhi Du ◽  
Zengqiang Chen

This paper first discusses a fractional-order Liu system of order as low as 2.7 and shows its chaotic characteristics by carrying out numerical simulations such as Lyapunov exponents, bifurcation diagrams and phase portraits. Then, by using the topological horseshoe theory and computer-assisted proof, the existence of chaos in the system is verified theoretically. Finally, the fractional-order system is implemented on a Field Programmable Gate Array (FPGA) and the results obtained show that the fractional-order Liu system is indeed chaotic.


2017 ◽  
Vol 6 (2) ◽  
pp. 609-620 ◽  
Author(s):  
Ayub Khan ◽  
Mridula Budhraja ◽  
Aysha Ibraheem
Keyword(s):  

2016 ◽  
Vol 65 (7) ◽  
pp. 070501
Author(s):  
Liu Jian-Ming ◽  
Yang Xia ◽  
Gao Yue-Long ◽  
Liu Fu-Cai

Sign in / Sign up

Export Citation Format

Share Document