scholarly journals Metric Spaces Under Interval Uncertainty: Towards an Adequate Definition

Author(s):  
Mahdokht Afravi ◽  
Vladik Kreinovich ◽  
Thongchai Dumrongpokaphoan
1969 ◽  
Vol 130 (1-6) ◽  
pp. 277-303 ◽  
Author(s):  
Aloysio Janner ◽  
Edgar Ascher

2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

2001 ◽  
Vol 37 (1-2) ◽  
pp. 169-184
Author(s):  
B. Windels

In 1930 Kuratowski introduced the measure of non-compactness for complete metric spaces in order to measure the discrepancy a set may have from being compact.Since then several variants and generalizations concerning quanti .cation of topological and uniform properties have been studied.The introduction of approach uniform spaces,establishes a unifying setting which allows for a canonical quanti .cation of uniform concepts,such as completeness,which is the subject of this article.


Author(s):  
Jagdish C. Chaudhary ◽  
Shailesh T. Patel

In this paper, we prove some common fixed point theorems in complete metric spaces for self mapping satisfying a contractive condition of Integral  type.


Vestnik MEI ◽  
2018 ◽  
pp. 91-97
Author(s):  
Lyudmila L. Kosareva ◽  
◽  
Nikita V. Skibitskiy ◽  

2013 ◽  
Vol 1 ◽  
pp. 200-231 ◽  
Author(s):  
Andrea C.G. Mennucci

Abstract In this paper we discuss asymmetric length structures and asymmetric metric spaces. A length structure induces a (semi)distance function; by using the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempotent. As a typical application, we consider the length of paths defined by a Finslerian functional in Calculus of Variations. In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space.


2020 ◽  
Vol 45 (2) ◽  
pp. 125-155
Author(s):  
Vadim Romanuke

AbstractA problem of reducing interval uncertainty is considered by an approach of cutting off equal parts from the left and right. The interval contains admissible values of an observed object’s parameter. The object’s parameter cannot be measured directly or deductively computed, so it is estimated by expert judgments. Terms of observations are short, and the object’s statistical data are poor. Thus an algorithm of flexibly reducing interval uncertainty is designed via adjusting the parameter by expert procedures and allowing to control cutting off. While the parameter is adjusted forward, the interval becomes progressively narrowed after every next expert procedure. The narrowing is performed via division-by-q dichotomization cutting off the q−1-th parts from the left and right. If the current parameter’s value falls outside of the interval, forward adjustment is canceled. Then backward adjustment is executed, where one of the endpoints is moved backwards. Adjustment is not executed when the current parameter’s value enclosed within the interval is simultaneously too close to both left and right endpoints. If the value is “trapped” like that for a definite number of times in succession, the early stop fires.


Sign in / Sign up

Export Citation Format

Share Document