scholarly journals Computing Constrained Approximate Equilibria in Polymatrix Games

Author(s):  
Argyrios Deligkas ◽  
John Fearnley ◽  
Rahul Savani
Keyword(s):  
Author(s):  
Siddharth Barman ◽  
Katrina Ligett ◽  
Georgios Piliouras

Author(s):  
Krzysztof R. Apt ◽  
Sunil Simon ◽  
Dominik Wojtczak

We study strategic games on weighted directed graphs, where each player’s payoff is defined as the sum of the weights on the edges from players who chose the same strategy, augmented by a fixed nonnegative integer bonus for picking a given strategy. These games capture the idea of coordination in the absence of globally common strategies. We identify natural classes of graphs for which finite improvement or coalition-improvement paths of polynomial length always exist, and consequently a (pure) Nash equilibrium or a strong equilibrium can be found in polynomial time. The considered classes of graphs are typical in network topologies: simple cycles correspond to the token ring local area networks, whereas open chains of simple cycles correspond to multiple independent rings topology from the recommendation G.8032v2 on Ethernet ring protection switching. For simple cycles, these results are optimal in the sense that without the imposed conditions on the weights and bonuses, a Nash equilibrium may not even exist. Finally, we prove that determining the existence of a Nash equilibrium or of a strong equilibrium is NP-complete already for unweighted graphs, with no bonuses assumed. This implies that the same problems for polymatrix games are strongly NP-hard.


2020 ◽  
Vol 69 ◽  
pp. 67-84
Author(s):  
Luis Ortiz

Graphical games are one of the earliest examples of the impact that the general field of graphical models have had in other areas, and in this particular case, in classical mathematical models in game theory. Graphical multi-hypermatrix games, a concept formally introduced in this research note, generalize graphical games while allowing the possibility of further space savings in model representation to that of standard graphical games. The main focus of this research note is discretization schemes for computing approximate Nash equilibria, with emphasis on graphical games, but also briefly touching on normal-form and polymatrix games. The main technical contribution is a theorem that establishes sufficient conditions for a discretization of the players’ space of mixed strategies to contain an approximate Nash equilibrium. The result is actually stronger because every exact Nash equilibrium has a nearby approximate Nash equilibrium on the grid induced by the discretization. The sufficient conditions are weaker than those of previous results. In particular, a uniform discretization of size linear in the inverse of the approximation error and in the natural game-representation parameters suffices. The theorem holds for a generalization of graphical games, introduced here. The result has already been useful in the design and analysis of tractable algorithms for graphical games with parametric payoff functions and certain game-graph structures. For standard graphical games, under natural conditions, the discretization is logarithmic in the game-representation size, a substantial improvement over the linear dependency previously required. Combining the improved discretization result with old results on constraint networks in AI simplifies the derivation and analysis of algorithms for computing approximate Nash equilibria in graphical games.


2019 ◽  
Vol 8 (1) ◽  
pp. 3-31 ◽  
Author(s):  
Nicola Basilico ◽  
Stefano Coniglio ◽  
Nicola Gatti ◽  
Alberto Marchesi

1989 ◽  
Vol 18 (3) ◽  
pp. 261-272 ◽  
Author(s):  
L. G. Quintas
Keyword(s):  

1992 ◽  
Vol 4 (2) ◽  
pp. 167-190 ◽  
Author(s):  
Douglas A. Miller ◽  
Steven W. Zucker

What is the complexity of computing equilibria for physically implementable analog networks (Hopfield 1984; Sejnowski 1981) with arbitrary connectivity? We show that if the amplifiers are piecewise-linear, then such networks are instances of a game-theoretic model known as polymatrix games. In contrast with the usual gradient descent methods for symmetric networks, equilibria for polymatrix games may be computed by vertex pivoting algorithms similar to the simplex method for linear programming. Like the simplex method, these algorithms have characteristic low order polynomial behavior in virtually all practical cases, though not certain theoretical ones. While these algorithms cannot be applied to models requiring evolution from an initial point, they are applicable to “clamping” models whose input is expressed purely as a bias. Thus we have an a priori indication that such models are computationally tractable.


Author(s):  
Pavel Naumov ◽  
Italo Simonelli

This paper proposes a novel way to compare classes of strategic games based on their sets of pure Nash equilibria. This approach is then used to relate the classes of zero-sum games, polymatrix, and k-polymatrix games. This paper concludes with a conjecture that k-polymatrix games form an increasing chain of classes.


Sign in / Sign up

Export Citation Format

Share Document