approximate nash equilibrium
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 15)

H-INDEX

2
(FIVE YEARS 2)

2021 ◽  
Vol 66 (2) ◽  
pp. 51
Author(s):  
T.-V. Pricope

Imperfect information games describe many practical applications found in the real world as the information space is rarely fully available. This particular set of problems is challenging due to the random factor that makes even adaptive methods fail to correctly model the problem and find the best solution. Neural Fictitious Self Play (NFSP) is a powerful algorithm for learning approximate Nash equilibrium of imperfect information games from self-play. However, it uses only crude data as input and its most successful experiment was on the in-limit version of Texas Hold’em Poker. In this paper, we develop a new variant of NFSP that combines the established fictitious self-play with neural gradient play in an attempt to improve the performance on large-scale zero-sum imperfect information games and to solve the more complex no-limit version of Texas Hold’em Poker using powerful handcrafted metrics and heuristics alongside crude, raw data. When applied to no-limit Hold’em Poker, the agents trained through self-play outperformed the ones that used fictitious play with a normal-form single-step approach to the game. Moreover, we showed that our algorithm converges close to a Nash equilibrium within the limited training process of our agents with very limited hardware. Finally, our best self-play-based agent learnt a strategy that rivals expert human level.  


Games ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 47
Author(s):  
Sam Ganzfried

Successful algorithms have been developed for computing Nash equilibrium in a variety of finite game classes. However, solving continuous games—in which the pure strategy space is (potentially uncountably) infinite—is far more challenging. Nonetheless, many real-world domains have continuous action spaces, e.g., where actions refer to an amount of time, money, or other resource that is naturally modeled as being real-valued as opposed to integral. We present a new algorithm for approximating Nash equilibrium strategies in continuous games. In addition to two-player zero-sum games, our algorithm also applies to multiplayer games and games with imperfect information. We experiment with our algorithm on a continuous imperfect-information Blotto game, in which two players distribute resources over multiple battlefields. Blotto games have frequently been used to model national security scenarios and have also been applied to electoral competition and auction theory. Experiments show that our algorithm is able to quickly compute close approximations of Nash equilibrium strategies for this game.


Author(s):  
Joseph Frédéric Bonnans ◽  
Pierre Lavigne ◽  
Laurent Pfeiffer

We propose and investigate a discrete-time mean field game model involving risk-averse agents. The model under study is a coupled system of dynamic programming equations with a Kolmogorov equation. The agents' risk aversion is modeled by composite risk measures. The existence of a solution to the coupled system is obtained with a fixed point approach. The corresponding feedback control allows to construct an approximate Nash equilibrium for a related dynamic game with finitely many players.


2021 ◽  
pp. 97-111
Author(s):  
Zhaohua Chen ◽  
Xiaotie Deng ◽  
Wenhan Huang ◽  
Hanyu Li ◽  
Yuhao Li

2020 ◽  
Vol 45 (4) ◽  
pp. 1596-1620
Author(s):  
Naci Saldi ◽  
Tamer Başar ◽  
Maxim Raginsky

In this paper, we study a class of discrete-time mean-field games under the infinite-horizon risk-sensitive optimality criterion. Risk sensitivity is introduced for each agent (player) via an exponential utility function. In this game model, each agent is coupled with the rest of the population through the empirical distribution of the states, which affects both the agent’s individual cost and its state dynamics. Under mild assumptions, we establish the existence of a mean-field equilibrium in the infinite-population limit as the number of agents (N) goes to infinity, and we then show that the policy obtained from the mean-field equilibrium constitutes an approximate Nash equilibrium when N is sufficiently large.


2020 ◽  
Vol 69 ◽  
pp. 67-84
Author(s):  
Luis Ortiz

Graphical games are one of the earliest examples of the impact that the general field of graphical models have had in other areas, and in this particular case, in classical mathematical models in game theory. Graphical multi-hypermatrix games, a concept formally introduced in this research note, generalize graphical games while allowing the possibility of further space savings in model representation to that of standard graphical games. The main focus of this research note is discretization schemes for computing approximate Nash equilibria, with emphasis on graphical games, but also briefly touching on normal-form and polymatrix games. The main technical contribution is a theorem that establishes sufficient conditions for a discretization of the players’ space of mixed strategies to contain an approximate Nash equilibrium. The result is actually stronger because every exact Nash equilibrium has a nearby approximate Nash equilibrium on the grid induced by the discretization. The sufficient conditions are weaker than those of previous results. In particular, a uniform discretization of size linear in the inverse of the approximation error and in the natural game-representation parameters suffices. The theorem holds for a generalization of graphical games, introduced here. The result has already been useful in the design and analysis of tractable algorithms for graphical games with parametric payoff functions and certain game-graph structures. For standard graphical games, under natural conditions, the discretization is logarithmic in the game-representation size, a substantial improvement over the linear dependency previously required. Combining the improved discretization result with old results on constraint networks in AI simplifies the derivation and analysis of algorithms for computing approximate Nash equilibria in graphical games.


Author(s):  
Jiří Čermák ◽  
Viliam Lisý ◽  
Branislav Bošanský

Information abstraction is one of the methods for tackling large extensive-form games (EFGs). Removing some information available to players reduces the memory required for computing and storing strategies. We present novel domain-independent abstraction methods for creating very coarse abstractions of EFGs that still compute strategies that are (near) optimal in the original game. First, the methods start with an arbitrary abstraction of the original game (domain-specific or the coarsest possible). Next, they iteratively detect which information is required in the abstract game so that a (near) optimal strategy in the original game can be found and include this information into the abstract game. Moreover, the methods are able to exploit imperfect-recall abstractions where players can even forget the history of their own actions. We present two algorithms that follow these steps -- FPIRA, based on fictitious play, and CFR+IRA, based on counterfactual regret minimization. The experimental evaluation confirms that our methods can closely approximate Nash equilibrium of large games using abstraction with only 0.9% of information sets of the original game.


2020 ◽  
Vol 34 (05) ◽  
pp. 7143-7150
Author(s):  
Romuald Elie ◽  
Julien Pérolat ◽  
Mathieu Laurière ◽  
Matthieu Geist ◽  
Olivier Pietquin

Learning by experience in Multi-Agent Systems (MAS) is a difficult and exciting task, due to the lack of stationarity of the environment, whose dynamics evolves as the population learns. In order to design scalable algorithms for systems with a large population of interacting agents (e.g., swarms), this paper focuses on Mean Field MAS, where the number of agents is asymptotically infinite. Recently, a very active burgeoning field studies the effects of diverse reinforcement learning algorithms for agents with no prior information on a stationary Mean Field Game (MFG) and learn their policy through repeated experience. We adopt a high perspective on this problem and analyze in full generality the convergence of a fictitious iterative scheme using any single agent learning algorithm at each step. We quantify the quality of the computed approximate Nash equilibrium, in terms of the accumulated errors arising at each learning iteration step. Notably, we show for the first time convergence of model free learning algorithms towards non-stationary MFG equilibria, relying only on classical assumptions on the MFG dynamics. We illustrate our theoretical results with a numerical experiment in a continuous action-space environment, where the approximate best response of the iterative fictitious play scheme is computed with a deep RL algorithm.


Author(s):  
Yu.V. Averboukh

The paper is concerned with approximate solutions of nonzero-sum differential games. An approximate Nash equilibrium can be designed by a given solution of an auxiliary continuous-time dynamic game. We consider the case when dynamics is determined by a Markov chain. For this game the value function is determined by an ordinary differential inclusion. Thus, we obtain a construction of approximate equilibria with the players' outcome close to the solution of the differential inclusion. Additionally, we propose a way of designing a continuous-time Markov game approximating the original dynamics.


Sign in / Sign up

Export Citation Format

Share Document