Software Architecture for an ORC Turbine – Case Study for an Intelligent Technical System in the Era of the Internet of Things

Author(s):  
Carsten Wolff ◽  
Mathias Knirr ◽  
Tobias Pallwitz ◽  
Hüseyin Igci ◽  
Klaus-Peter Priebe ◽  
...  
Computer ◽  
2016 ◽  
Vol 49 (5) ◽  
pp. 87-90 ◽  
Author(s):  
Phillip A. Laplante ◽  
Jeffrey Voas ◽  
Nancy Laplante

2018 ◽  
Vol 5 (2) ◽  
pp. 1275-1284 ◽  
Author(s):  
Gopika Premsankar ◽  
Mario Di Francesco ◽  
Tarik Taleb

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2783 ◽  
Author(s):  
Linh-An Phan ◽  
Taehong Kim

Smart home is one of the most promising applications of the Internet of Things. Although there have been studies about this technology in recent years, the adoption rate of smart homes is still low. One of the largest barriers is technological fragmentation within the smart home ecosystem. Currently, there are many protocols used in a connected home, increasing the confusion of consumers when choosing a product for their house. One possible solution for this fragmentation is to make a gateway to handle the diverse protocols as a central hub in the home. However, this solution brings about another issue for manufacturers: compatibility. Because of the various smart devices on the market, supporting all possible devices in one gateway is also an enormous challenge. In this paper, we propose a software architecture for a gateway in a smart home system to solve the compatibility problem. By creating a mechanism to dynamically download and update a device profile from a server, the gateway can easily handle new devices. Moreover, the proposed gateway also supports unified control over heterogeneous networks. We implemented a prototype to prove the feasibility of the proposed gateway architecture and evaluated its performance from the viewpoint of message execution time over heterogeneous networks, as well as the latency for device profile downloads and updates, and the overhead needed for handling unknown commands.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4121 ◽  
Author(s):  
Alberto Giaretta ◽  
Nicola Dragoni ◽  
Fabio Massacci

Cybersecurity is one of the biggest challenges in the Internet of Things (IoT) domain, as well as one of its most embarrassing failures. As a matter of fact, nowadays IoT devices still exhibit various shortcomings. For example, they lack secure default configurations and sufficient security configurability. They also lack rich behavioural descriptions, failing to list provided and required services. To answer this problem, we envision a future where IoT devices carry behavioural contracts and Fog nodes store network policies. One requirement is that contract consistency must be easy to prove. Moreover, contracts must be easy to verify against network policies. In this paper, we propose to combine the security-by-contract (S × C) paradigm with Fog computing to secure IoT devices. Following our previous work, first we formally define the pillars of our proposal. Then, by means of a running case study, we show that we can model communication flows and prevent information leaks. Last, we show that our contribution enables a holistic approach to IoT security, and that it can also prevent unexpected chains of events.


Sensors ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 2137-2160 ◽  
Author(s):  
Minwoo Ryu ◽  
Jaeho Kim ◽  
Jaeseok Yun

Sign in / Sign up

Export Citation Format

Share Document