Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images

Author(s):  
Gabriel García ◽  
Jhair Gallardo ◽  
Antoni Mauricio ◽  
Jorge López ◽  
Christian Del Carpio

Diabetic Retinopathy (DR) is a microvascular complication of Diabetes that can lead to blindness if it is severe. Microaneurysm (MA) is the initial and main symptom of DR. In this paper, an automatic detection of DR from retinal fundus images of publicly available dataset has been proposed using transfer learning with pre-trained model VGG16 based on Convolutional Neural Network (CNN). Our method achieves improvement in accuracy for MA detection using retinal fundus images in prediction of Diabetic Retinopathy.


Author(s):  
Juan Elisha Widyaya ◽  
Setia Budi

Diabetic retinopathy (DR) is eye diseases caused by diabetic mellitus or sugar diseases. If DR is detected in early stage, the blindness that follow can be prevented. Ophthalmologist or eye clinician usually decide the stage of DR from retinal fundus images. Careful examination of retinal fundus images is time consuming task and require experienced clinicians or ophthalmologist but a computer which has been trained to recognize the DR stages can diagnose and give result in real-time manner. One approach of algorithm to train a computer to recognize an image is deep learning Convolutional Neural Network (CNN). CNN allows a computer to learn the features of an image, in our case is retinal fundus image, automatically. Preprocessing is usually done before a CNN model is trained. In this study, four preprocessing were carried out. Of the four preprocessing tested, preprocessing with CLAHE and unsharp masking on the green channel of the retinal fundus image give the best results with an accuracy of 79.79%, 82.97% precision, 74.64% recall, and 95.81% AUC. The CNN architecture used is Inception v3.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 602
Author(s):  
Muhammad Aamir ◽  
Muhammad Irfan ◽  
Tariq Ali ◽  
Ghulam Ali ◽  
Ahmad Shaf ◽  
...  

Glaucoma, an eye disease, occurs due to Retinal damages and it is an ordinary cause of blindness. Most of the available examining procedures are too long and require manual instructions to use them. In this work, we proposed a multi-level deep convolutional neural network (ML-DCNN) architecture on retinal fundus images to diagnose glaucoma. We collected a retinal fundus images database from the local hospital. The fundus images are pre-processed by an adaptive histogram equalizer to reduce the noise of images. The ML-DCNN architecture is used for features extraction and classification into two phases, one for glaucoma detection known as detection-net and the second one is classification-net used for classification of affected retinal glaucoma images into three different categories: Advanced, Moderate and Early. The proposed model is tested on 1338 retinal glaucoma images and performance is measured in the form of different statistical terms known as sensitivity (SE), specificity (SP), accuracy (ACC), and precision (PRE). On average, SE of 97.04%, SP of 98.99%, ACC of 99.39%, and PRC of 98.2% are achieved. The obtained outcomes are comparable to the state-of-the-art systems and achieved competitive results to solve the glaucoma eye disease problems for complex glaucoma eye disease cases.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Sign in / Sign up

Export Citation Format

Share Document