scholarly journals An Adoptive Threshold-Based Multi-Level Deep Convolutional Neural Network for Glaucoma Eye Disease Detection and Classification

Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 602
Author(s):  
Muhammad Aamir ◽  
Muhammad Irfan ◽  
Tariq Ali ◽  
Ghulam Ali ◽  
Ahmad Shaf ◽  
...  

Glaucoma, an eye disease, occurs due to Retinal damages and it is an ordinary cause of blindness. Most of the available examining procedures are too long and require manual instructions to use them. In this work, we proposed a multi-level deep convolutional neural network (ML-DCNN) architecture on retinal fundus images to diagnose glaucoma. We collected a retinal fundus images database from the local hospital. The fundus images are pre-processed by an adaptive histogram equalizer to reduce the noise of images. The ML-DCNN architecture is used for features extraction and classification into two phases, one for glaucoma detection known as detection-net and the second one is classification-net used for classification of affected retinal glaucoma images into three different categories: Advanced, Moderate and Early. The proposed model is tested on 1338 retinal glaucoma images and performance is measured in the form of different statistical terms known as sensitivity (SE), specificity (SP), accuracy (ACC), and precision (PRE). On average, SE of 97.04%, SP of 98.99%, ACC of 99.39%, and PRC of 98.2% are achieved. The obtained outcomes are comparable to the state-of-the-art systems and achieved competitive results to solve the glaucoma eye disease problems for complex glaucoma eye disease cases.

Diabetic Retinopathy (DR) is a microvascular complication of Diabetes that can lead to blindness if it is severe. Microaneurysm (MA) is the initial and main symptom of DR. In this paper, an automatic detection of DR from retinal fundus images of publicly available dataset has been proposed using transfer learning with pre-trained model VGG16 based on Convolutional Neural Network (CNN). Our method achieves improvement in accuracy for MA detection using retinal fundus images in prediction of Diabetic Retinopathy.


Author(s):  
Juan Elisha Widyaya ◽  
Setia Budi

Diabetic retinopathy (DR) is eye diseases caused by diabetic mellitus or sugar diseases. If DR is detected in early stage, the blindness that follow can be prevented. Ophthalmologist or eye clinician usually decide the stage of DR from retinal fundus images. Careful examination of retinal fundus images is time consuming task and require experienced clinicians or ophthalmologist but a computer which has been trained to recognize the DR stages can diagnose and give result in real-time manner. One approach of algorithm to train a computer to recognize an image is deep learning Convolutional Neural Network (CNN). CNN allows a computer to learn the features of an image, in our case is retinal fundus image, automatically. Preprocessing is usually done before a CNN model is trained. In this study, four preprocessing were carried out. Of the four preprocessing tested, preprocessing with CLAHE and unsharp masking on the green channel of the retinal fundus image give the best results with an accuracy of 79.79%, 82.97% precision, 74.64% recall, and 95.81% AUC. The CNN architecture used is Inception v3.


Glaucoma is a autistic eye disease and major causes of firm blindness worldwide. For this we are trying to design a tool for early detection of glaucoma. In this paper glaucoma detection is based on the algorithm of retinal fundus images[1]. A supervised techniques for the detection of glaucoma is used. For the extraction of the features of the images we used PCA(principal component analysis). And for the classification support vectors are used. It shows mainly an artificial intelligent system for the segmentation of optic disk and cup. The accuracy of this model is comparatively much more greater than previously designed neural architectures


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document