Biophysical Modelling of the Ganges, Brahmaputra, and Meghna Catchment

Author(s):  
Paul G. Whitehead
10.1596/28574 ◽  
2017 ◽  
Author(s):  
Satya Priya ◽  
William Young ◽  
Thomas Hopson ◽  
Ankit Avasthi

2016 ◽  
Author(s):  
Carol A. Wilson ◽  
◽  
Michael Steckler ◽  
Steven L. Goodbred ◽  
Richard Hale ◽  
...  

2021 ◽  
Vol 246 ◽  
pp. 106659
Author(s):  
Sunil Kumar Jha ◽  
Vinay Kumar Mishra ◽  
Chhedi Lal Verma ◽  
Navneet Sharma ◽  
Alok Kumar Sikka ◽  
...  

1906 ◽  
Vol 1 (4) ◽  
pp. 454-469 ◽  
Author(s):  
H. M. Leake

In a stretch of arable lands like those of the Ganges Valley, although damage may be caused by occasional floods, which are sudden and of short duration, the more general, and by far the most serious loss is due to deficiency of moisture of the soil: thus the relation of the soil to soil moisture becomes of more than ordinary importance. Dr Voelcker, in his Report on Indian Agriculture, remarks: “In India the relation of soils to moisture acquires a greater significance than almost anywhere else.......” This relation is fundamental, for on it depends the methods for the conservation of soil moisture, for the economical application of irrigation water, and for the treatment of barren and salt lands—all problems of direct interest to agriculturists in the plains of Northern India. The methods for dealing with these problems must be largely—if not entirely—empirical until such time as the behaviour of the soil in its relation to moisture is investigated. The problem in all its various branches is enormous, and in a country in which the seasons follow each other with such rapidity, and vary the one from the other in so marked a manner, it frequently happens that a particular point, if not determined within a period of a few days, must await solution until the following year.


2017 ◽  
Vol 18 (8) ◽  
pp. 3003-3015 ◽  
Author(s):  
Takuya Manaka ◽  
Daisuke Araoka ◽  
Toshihiro Yoshimura ◽  
H. M. Zakir Hossain ◽  
Yoshiro Nishio ◽  
...  

Water Policy ◽  
2013 ◽  
Vol 15 (S1) ◽  
pp. 9-25 ◽  
Author(s):  
Bharat R. Sharma ◽  
Devaraj de Condappa

The topography of the Ganges basin is highly variable, with the steep mountainous region of the Himalaya upstream and the large fertile plains in eastern India and Bangladesh downstream. The contribution from the glaciers to streamflows is supposed to be significant but there is uncertainty surrounding the impact of climate change on glaciers. An application of the Water Evaluation and Planning model was set up which contained an experimental glaciers module. The model also examined the possible impacts of an increase in temperature. The contribution from glaciated areas is significant (60–75%) in the Upper Ganges but reduces downstream, falling to about 19% at Farakka. Climate change-induced rise in temperature logically increases the quantity of snow and ice that melts in glaciated areas. However, this impact decreases from upstream (+8% to +26% at Tehri dam) to downstream (+1% to +4% at Farakka). Such increases in streamflows may create flood events more frequently, or of higher magnitude, in the upper reaches. Potential strategies to exploit this additional water may include the construction of new dams/reservoir storage and the development of groundwater in the basin through managed aquifer recharge. The riparian states of India, Nepal and Bangladesh could harness this opportunity to alleviate physical water scarcity and improve productivity.


1993 ◽  
Vol 23 (2) ◽  
pp. 189-213 ◽  
Author(s):  
Willem van Schendel
Keyword(s):  

2016 ◽  
Vol 127 ◽  
pp. 1-15 ◽  
Author(s):  
Md. Ashraful Islam ◽  
Debashis Mitra ◽  
Ashraf Dewan ◽  
Syed Humayun Akhter

Sign in / Sign up

Export Citation Format

Share Document