An Optimized Adaptive Random Partition Software Testing by Using Bacterial Foraging Algorithm

Author(s):  
K. Devika Rani Dhivya ◽  
V. S. Meenakshi
2019 ◽  
Vol 8 (3) ◽  
pp. 4265-4271

Software testing is an essential activity in software industries for quality assurance; subsequently, it can be effectively removing defects before software deployment. Mostly good software testing strategy is to accomplish the fundamental testing objective while solving the trade-offs between effectiveness and efficiency testing issues. Adaptive and Random Partition software Testing (ARPT) approach was a combination of Adaptive Testing (AT) and Random Partition Approach (RPT) used to test software effectively. It has two variants they are ARPT-1 and ARPT-2. In ARPT-1, AT was used to select a certain number of test cases and then RPT was used to select a number of test cases before returning to AT. In ARPT-2, AT was used to select the first m test cases and then switch to RPT for the remaining tests. The computational complexity for random partitioning in ARPT was solved by cluster the test cases using a different clustering algorithm. The parameters of ARPT-1 and ARPT-2 needs to be estimated for different software, it leads to high computation overhead and time consumption. It was solved by Improvised BAT optimization algorithms and this approach is named as Optimized ARPT1 (OARPT1) and OARPT2. By using all test cases in OARPT will leads to high time consumption and computational overhead. In order to avoid this problem, OARPT1 with Support Vector Machine (OARPT1-SVM) and OARPT2- SVM are introduced in this paper. The SVM is used for selection of best test cases for OARPT-1 and OARPT-2 testing strategy. The SVM constructs hyper plane in a multi-dimensional space which is used to separate test cases which have high code and branch coverage and test cases which have low code and branch coverage. Thus, the SVM selects the best test cases for OARPT-1 and OARPT-2. The selected test cases are used in OARPT-1 and OARPT-2 to test software. In the experiment, three different software is used to prove the effectiveness of proposed OARPT1- SVM and OARPT2-SVM testing strategies in terms of time consumption, defect detection efficiency, branch coverage and code coverage.


2012 ◽  
Vol 12 (11) ◽  
pp. 3500-3513 ◽  
Author(s):  
Nicole Pandit ◽  
Anshul Tripathi ◽  
Shashikala Tapaswi ◽  
Manjaree Pandit

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Li ◽  
Hua Zhu

The optimal performance of the ant colony algorithm (ACA) mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA), considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA) and a particle swarm optimization (PSO), and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.


Sign in / Sign up

Export Citation Format

Share Document