Confidence Intervals for Common Mean of Lognormal Distributions

Author(s):  
Narudee Smithpreecha ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong
PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10758
Author(s):  
Patcharee Maneerat ◽  
Sa-Aat Niwitpong

The daily average natural rainfall amounts in the five regions of Thailand can be estimated using the confidence intervals for the common mean of several delta-lognormal distributions based on the fiducial generalized confidence interval (FGCI), large sample (LS), method of variance estimates recovery (MOVER), parametric bootstrap (PB), and highest posterior density intervals based on Jeffreys’ rule (HPD-JR) and normal-gamma-beta (HPD-NGB) priors. Monte Carlo simulation was conducted to assess the performance in terms of the coverage probability and average length of the proposed methods. The numerical results indicate that MOVER and PB provided better performances than the other methods in a variety of situations, even when the sample case was large. The efficacies of the proposed methods were illustrated by applying them to real rainfall datasets from the five regions of Thailand.


2017 ◽  
Vol 51 (4) ◽  
pp. 245-260
Author(s):  
Warisa Thangjai ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9662
Author(s):  
Noppadon Yosboonruang ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

The coefficient of variation is often used to illustrate the variability of precipitation. Moreover, the difference of two independent coefficients of variation can describe the dissimilarity of rainfall from two areas or times. Several researches reported that the rainfall data has a delta-lognormal distribution. To estimate the dynamics of precipitation, confidence interval construction is another method of effectively statistical inference for the rainfall data. In this study, we propose confidence intervals for the difference of two independent coefficients of variation for two delta-lognormal distributions using the concept that include the fiducial generalized confidence interval, the Bayesian methods, and the standard bootstrap. The performance of the proposed methods was gauged in terms of the coverage probabilities and the expected lengths via Monte Carlo simulations. Simulation studies shown that the highest posterior density Bayesian using the Jeffreys’ Rule prior outperformed other methods in virtually cases except for the cases of large variance, for which the standard bootstrap was the best. The rainfall series from Songkhla, Thailand are used to illustrate the proposed confidence intervals.


Sign in / Sign up

Export Citation Format

Share Document