fiducial generalized confidence interval
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 6)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 5 (4) ◽  
pp. 457-470
Author(s):  
Noppadon Yosboonruang ◽  
Sa-Aat Niwitpong

There are many types of skewed distribution, one of which is the lognormal distribution that is positively skewed and may contain true zero values. The coefficient of quartile variation is a statistical tool used to measure the dispersion of skewed and kurtosis data. The purpose of this study is to establish confidence and credible intervals for the coefficient of quartile variation of a zero-inflated lognormal distribution. The proposed approaches are based on the concepts of the fiducial generalized confidence interval, and the Bayesian method. Coverage probabilities and expected lengths were used to evaluate the performance of the proposed approaches via Monte Carlo simulation. The results of the simulation studies show that the fiducial generalized confidence interval and the Bayesian based on uniform and normal inverse Chi-squared priors were appropriate in terms of the coverage probability and expected length, while the Bayesian approach based on Jeffreys' rule prior can be used as alternatives. In addition, real data based on the red cod density from a trawl survey in New Zealand is used to illustrate the performances of the proposed approaches. Doi: 10.28991/esj-2021-01289 Full Text: PDF


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253935
Author(s):  
Patcharee Maneerat ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

Natural disasters such as flooding and landslides are important unexpected events during the rainy season in Thailand, and how to direct action to avoid their impacts is the motivation behind this study. The differences between the means of natural rainfall datasets in different areas can be estimated using simultaneous confidence intervals (SCIs) for pairwise comparisons of the means of delta-lognormal distributions. Our proposed methods are based on a parametric bootstrap (PB), a fiducial generalized confidence interval (FGCI), the method of variance estimates recovery (MOVER), and Bayesian credible intervals based on mixed (BCI-M) and uniform (BCI-U) priors. Their coverage probabilities, lower and upper error probabilities, and relative average lengths were used to evaluate and compare their SCI performances through Monte Carlo simulation. The results show that BCI-U and PB work well in different situations, even with large differences in variances σ j 2. All of the methods were applied to estimate pairwise differences between the means of natural rainfall data from five areas in Thailand during the rainy season to determine their abilities to predict occurrences of flooding and landslides.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11651
Author(s):  
Noppadon Yosboonruang ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

The delta-lognormal distribution is a combination of binomial and lognormal distributions, and so rainfall series that include zero and positive values conform to this distribution. The coefficient of variation is a good tool for measuring the dispersion of rainfall. Statistical estimation can be used not only to illustrate the dispersion of rainfall but also to describe the differences between rainfall dispersions from several areas simultaneously. Therefore, the purpose of this study is to construct simultaneous confidence intervals for all pairwise differences between the coefficients of variation of delta-lognormal distributions using three methods: fiducial generalized confidence interval, Bayesian, and the method of variance estimates recovery. Their performances were gauged by measuring their coverage probabilities together with their expected lengths via Monte Carlo simulation. The results indicate that the Bayesian credible interval using the Jeffreys’ rule prior outperformed the others in virtually all cases. Rainfall series from five regions in Thailand were used to demonstrate the efficacies of the proposed methods.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10758
Author(s):  
Patcharee Maneerat ◽  
Sa-Aat Niwitpong

The daily average natural rainfall amounts in the five regions of Thailand can be estimated using the confidence intervals for the common mean of several delta-lognormal distributions based on the fiducial generalized confidence interval (FGCI), large sample (LS), method of variance estimates recovery (MOVER), parametric bootstrap (PB), and highest posterior density intervals based on Jeffreys’ rule (HPD-JR) and normal-gamma-beta (HPD-NGB) priors. Monte Carlo simulation was conducted to assess the performance in terms of the coverage probability and average length of the proposed methods. The numerical results indicate that MOVER and PB provided better performances than the other methods in a variety of situations, even when the sample case was large. The efficacies of the proposed methods were illustrated by applying them to real rainfall datasets from the five regions of Thailand.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9662
Author(s):  
Noppadon Yosboonruang ◽  
Sa-Aat Niwitpong ◽  
Suparat Niwitpong

The coefficient of variation is often used to illustrate the variability of precipitation. Moreover, the difference of two independent coefficients of variation can describe the dissimilarity of rainfall from two areas or times. Several researches reported that the rainfall data has a delta-lognormal distribution. To estimate the dynamics of precipitation, confidence interval construction is another method of effectively statistical inference for the rainfall data. In this study, we propose confidence intervals for the difference of two independent coefficients of variation for two delta-lognormal distributions using the concept that include the fiducial generalized confidence interval, the Bayesian methods, and the standard bootstrap. The performance of the proposed methods was gauged in terms of the coverage probabilities and the expected lengths via Monte Carlo simulations. Simulation studies shown that the highest posterior density Bayesian using the Jeffreys’ Rule prior outperformed other methods in virtually cases except for the cases of large variance, for which the standard bootstrap was the best. The rainfall series from Songkhla, Thailand are used to illustrate the proposed confidence intervals.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7344 ◽  
Author(s):  
Noppadon Yosboonruang ◽  
Sa-aat Niwitpong ◽  
Suparat Niwitpong

Since rainfall data series often contain zero values and thus follow a delta-lognormal distribution, the coefficient of variation is often used to illustrate the dispersion of rainfall in a number of areas and so is an important tool in statistical inference for a rainfall data series. Therefore, the aim in this paper is to establish new confidence intervals for a single coefficient of variation for delta-lognormal distributions using Bayesian methods based on the independent Jeffreys’, the Jeffreys’ Rule, and the uniform priors compared with the fiducial generalized confidence interval. The Bayesian methods are constructed with either equitailed confidence intervals or the highest posterior density interval. The performance of the proposed confidence intervals was evaluated using coverage probabilities and expected lengths via Monte Carlo simulations. The results indicate that the Bayesian equitailed confidence interval based on the independent Jeffreys’ prior outperformed the other methods. Rainfall data recorded in national parks in July 2015 and in precipitation stations in August 2018 in Nan province, Thailand are used to illustrate the efficacy of the proposed methods using a real-life dataset.


Sign in / Sign up

Export Citation Format

Share Document