On Sharp Bounds on the Rate of Convergence for Finite Continuous-Time Markovian Queueing Models

Author(s):  
Alexander Zeifman ◽  
Alexander Sipin ◽  
Victor Korolev ◽  
Galina Shilova ◽  
Ksenia Kiseleva ◽  
...  
Author(s):  
Anastasia L. Kryukova

There are many queuing systems that accept single arrivals, accumulate them and service only as a group. Examples of such systems exist in various areas of human life, from traffic of transport to processing requests on a computer network. Therefore, our study is actual. In this paper some class of finite Markovian queueing models with single arrivals and group services are studied. We considered the forward Kolmogorov system for corresponding class of Markov chains. The method of obtaining bounds of convergence on the rate via the notion of the logarithmic norm of a linear operator function is not applicable here. This approach gives sharp bounds for the situation of essentially non-negative matrix of the corresponding system, but in our case it does not hold. Here we use the method of differential inequalities to obtaining bounds on the rate of convergence to the limiting characteristics for the class of finite Markovian queueing models. We obtain bounds on the rate of convergence and compute the limiting characteristics for a specific non-stationary model too. Note the results can be successfully applied for modeling complex biological systems with possible single births and deaths of a group of particles.


2003 ◽  
Vol 40 (04) ◽  
pp. 970-979 ◽  
Author(s):  
A. Yu. Mitrophanov

For finite, homogeneous, continuous-time Markov chains having a unique stationary distribution, we derive perturbation bounds which demonstrate the connection between the sensitivity to perturbations and the rate of exponential convergence to stationarity. Our perturbation bounds substantially improve upon the known results. We also discuss convergence bounds for chains with diagonalizable generators and investigate the relationship between the rate of convergence and the sensitivity of the eigenvalues of the generator; special attention is given to reversible chains.


1988 ◽  
Vol 25 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Jean Johnson ◽  
Dean Isaacson

Sufficient conditions for strong ergodicity of discrete-time non-homogeneous Markov chains have been given in several papers. Conditions have been given using the left eigenvectors ψn of Pn(ψ nPn = ψ n) and also using the limiting behavior of Pn. In this paper we consider the analogous results in the case of continuous-time Markov chains where one uses the intensity matrices Q(t) instead of P(s, t). A bound on the rate of convergence of certain strongly ergodic chains is also given.


Sign in / Sign up

Export Citation Format

Share Document