scholarly journals On the rate of convergence for a class of Markovian queues with group services

Author(s):  
Anastasia L. Kryukova

There are many queuing systems that accept single arrivals, accumulate them and service only as a group. Examples of such systems exist in various areas of human life, from traffic of transport to processing requests on a computer network. Therefore, our study is actual. In this paper some class of finite Markovian queueing models with single arrivals and group services are studied. We considered the forward Kolmogorov system for corresponding class of Markov chains. The method of obtaining bounds of convergence on the rate via the notion of the logarithmic norm of a linear operator function is not applicable here. This approach gives sharp bounds for the situation of essentially non-negative matrix of the corresponding system, but in our case it does not hold. Here we use the method of differential inequalities to obtaining bounds on the rate of convergence to the limiting characteristics for the class of finite Markovian queueing models. We obtain bounds on the rate of convergence and compute the limiting characteristics for a specific non-stationary model too. Note the results can be successfully applied for modeling complex biological systems with possible single births and deaths of a group of particles.

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1752
Author(s):  
Alexander Zeifman ◽  
Yacov Satin ◽  
Alexander Sipin

We apply the method of differential inequalities for the computation of upper bounds for the rate of convergence to the limiting regime for one specific class of (in)homogeneous continuous-time Markov chains. Such an approach seems very general; the corresponding description and bounds were considered earlier for finite Markov chains with analytical in time intensity functions. Now we generalize this method to locally integrable intensity functions. Special attention is paid to the situation of a countable Markov chain. To obtain these estimates, we investigate the corresponding forward system of Kolmogorov differential equations as a differential equation in the space of sequences l1.


2005 ◽  
Vol 42 (01) ◽  
pp. 185-198 ◽  
Author(s):  
Erik A. Van Doorn ◽  
Alexander I. Zeifman

We study birth-death processes on the nonnegative integers, where {1, 2,…} is an irreducible class and 0 an absorbing state, with the additional feature that a transition to state 0 may occur from any state. We give a condition for absorption (extinction) to be certain and obtain the eventual absorption probabilities when absorption is not certain. We also study the rate of convergence, as t → ∞, of the probability of absorption at time t, and relate it to the common rate of convergence of the transition probabilities that do not involve state 0. Finally, we derive upper and lower bounds for the probability of absorption at time t by applying a technique that involves the logarithmic norm of an appropriately defined operator.


2018 ◽  
Vol 28 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Alexander Zeifman ◽  
Rostislav Razumchik ◽  
Yacov Satin ◽  
Ksenia Kiseleva ◽  
Anna Korotysheva ◽  
...  

AbstractIn this paper we present a method for the computation of convergence bounds for four classes of multiserver queueing systems, described by inhomogeneous Markov chains. Specifically, we consider an inhomogeneous M/M/S queueing system with possible state-dependent arrival and service intensities, and additionally possible batch arrivals and batch service. A unified approach based on a logarithmic norm of linear operators for obtaining sharp upper and lower bounds on the rate of convergence and corresponding sharp perturbation bounds is described. As a side effect, we show, by virtue of numerical examples, that the approach based on a logarithmic norm can also be used to approximate limiting characteristics (the idle probability and the mean number of customers in the system) of the systems considered with a given approximation error.


Author(s):  
Alexander Zeifman ◽  
Alexander Sipin ◽  
Victor Korolev ◽  
Galina Shilova ◽  
Ksenia Kiseleva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document