Pairs Trading via Nonlinear Autoregressive GARCH Models

Author(s):  
Benchawanaree Chodchuangnirun ◽  
Kongliang Zhu ◽  
Woraphon Yamaka
2011 ◽  
Vol 27 (6) ◽  
pp. 1236-1278 ◽  
Author(s):  
Mika Meitz ◽  
Pentti Saikkonen

This paper develops an asymptotic estimation theory for nonlinear autoregressive models with conditionally heteroskedastic errors. We consider a general nonlinear autoregression of order p (AR(p)) with the conditional variance specified as a general nonlinear first-order generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. We do not require the rescaled errors to be independent, but instead only to form a stationary and ergodic martingale difference sequence. Strong consistency and asymptotic normality of the global Gaussian quasi-maximum likelihood (QML) estimator are established under conditions comparable to those recently used in the corresponding linear case. To the best of our knowledge, this paper provides the first results on consistency and asymptotic normality of the QML estimator in nonlinear autoregressive models with GARCH errors.


2017 ◽  
Vol 04 ◽  
pp. 01-20
Author(s):  
Sabbah Gueddoudj ◽  
Keyword(s):  

2020 ◽  
Vol 38 (3) ◽  
Author(s):  
Ainhoa Fernández-Pérez ◽  
María de las Nieves López-García ◽  
José Pedro Ramos Requena

In this paper we present a non-conventional statistical arbitrage technique based in varying the number of standard deviations used to carry the trading strategy. We will show how values of 1 and 1,2 in the standard deviation provide better results that the classic strategy of Gatev et al (2006). An empirical application is performance using data of the FST100 index during the period 2010 to June 2019.


Author(s):  
Luis Felipe Bianchi Carbonera ◽  
Daniel Pinheiro Bernardon ◽  
Douglas de Castro Karnikowski ◽  
Felix Alberto Farret

Sign in / Sign up

Export Citation Format

Share Document