quasi maximum likelihood
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 42)

H-INDEX

33
(FIVE YEARS 1)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 158
Author(s):  
Xiaoling Li ◽  
Xingfa Zhang ◽  
Yuan Li

Estimation of a conditional covariance matrix is an interesting and important research topic in statistics and econometrics. However, modelling ultra-high dimensional dynamic (conditional) covariance structures is known to suffer from the curse of dimensionality or the problem of singularity. To partially solve this problem, this paper establishes a model by combining the ideas of a factor model and a symmetric GARCH model to describe the dynamics of a high-dimensional conditional covariance matrix. Quasi maximum likelihood estimation (QMLE) and least square estimation (LSE) methods are used to estimate the parameters in the model, and the plug-in method is introduced to obtain the estimation of conditional covariance matrix. Asymptotic properties are established for the proposed method, and simulation studies are given to demonstrate its performance. A financial application is presented to support the methodology.


AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 39-53
Author(s):  
Jaya P. N. Bishwal

For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2057
Author(s):  
Shuangshuang Li ◽  
Jianbao Chen ◽  
Danqing Chen

This article deals with asymmetrical spatial data which can be modeled by a partially linear varying coefficient spatial autoregressive panel model (PLVCSARPM) with random effects. We constructed its profile quasi-maximum likelihood estimators (PQMLE). The consistency and asymptotic normality of the estimators were proved under some regular conditions. Monte Carlo simulations implied our estimators have good finite sample performance. Finally, a set of asymmetric real data applications was analyzed for illustrating the performance of the provided method.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2402
Author(s):  
Petar Jevtić ◽  
Luca Regis

In this paper, we present and calibrate a multi-population stochastic mortality model based on latent square-root affine factors of the Cox-Ingersoll and Ross type. The model considers a generalization of the traditional actuarial mortality laws to a stochastic, multi-population and time-varying setting. We calibrate the model to fit the mortality dynamics of UK males and females over the last 50 years. We estimate the optimal states and model parameters using quasi-maximum likelihood techniques.


2021 ◽  
Author(s):  
Hang Liu ◽  
Kanchan Mukherjee

Abstract The quasi-maximum likelihood estimation is a commonly-used method for estimating the GARCH parameters. However, such estimators are sensitive to outliers and their asymptotic normality is proved under the finite fourth moment assumption on the underlying error distribution. In this paper, we propose a novel class of estimators of the GARCH parameters based on ranks of the residuals, called R-estimators, with the property that they are asymptotically normal under the existence of a finite 2 + δ moment of the errors and are highly efficient. We propose fast algorithm for computing the R-estimators. Both real data analysis and simulations show the superior performance of the proposed estimators under the heavy-tailed and asymmetric distributions.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Yan Liu

The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields, such as demography, epidemiology, regional economics, and psychology. With the deepening of research, some scholars find that there are some model specifications in spatial econometrics, such as spatial autoregressive (SAR) model and matrix exponential spatial specification (MESS), which cannot be nested within each other. Compared with the common SAR models, the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation. Meanwhile, MESS models have theoretical advantages. However, the theoretical research and application of MESS models have not been promoted vigorously. Therefore, the study of MESS model theory has practical significance. This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification (MESS) varying coefficient panel data models with fixed effects. It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.


2021 ◽  
pp. 217-228
Author(s):  
Andy Hector

GLMs with a binomial distribution are designed for the analysis of binomial counts (how many times something occurred relative to the total number of possible times it could have occurred). A logistic link function constrains predictions to be above zero and below the maximum using the S-shaped logistic curve. Overdispersion can be diagnosed and dealt with using a quasi-maximum likelihood extension to GLM analysis.


Sign in / Sign up

Export Citation Format

Share Document