Bioremediation and Decolorization of Textile Dyes by White Rot Fungi and Laccase Enzymes

Author(s):  
Ozfer Yesilada ◽  
Emre Birhanli ◽  
Hikmet Geckil
2012 ◽  
Vol 58 (3) ◽  
pp. 187-193 ◽  
Author(s):  
Cristiane A. Ottoni ◽  
Cledir Santos ◽  
Zofia Kozakiewicz ◽  
Nelson Lima

2006 ◽  
Vol 22 (1) ◽  
pp. 89-93 ◽  
Author(s):  
M. Asgher ◽  
S. A. H. Shah ◽  
M. Ali ◽  
R. L. Legge

2017 ◽  
Vol 16 (11) ◽  
pp. 2581-2588
Author(s):  
Ernesto M. Giorgio ◽  
Maria I. Fonseca ◽  
Andrea L. Morales ◽  
Pedro D. Zapata ◽  
Laura L. Villalba
Keyword(s):  

1991 ◽  
Vol 24 (3-4) ◽  
pp. 189-198 ◽  
Author(s):  
V. P. Lankinen ◽  
M. M. Inkeröinen ◽  
J. Pellinen ◽  
A. I. Hatakka

Decrease of adsorbable organic chlorine (AOX) is becoming the most important criterion for the efficiency of pulp mill effluent treatment in the 1990s. Two methods, designated MYCOR and MYCOPOR which utilize the white-rot fungus Phanerochaete chrysosporium have earlier been developed for the color removal of pulp mill effluents, but the processes have also a capacity to decrease the amount of chlorinated organic compounds. Lignin peroxidases (ligninases) produced by P. chrvsosporium may dechlorinate chlorinated phenols. In this work possibilities to use selected white-rot fungi in the treatment of E1-stage bleach plant effluent were studied. Phlebia radiata. Phanerochaete chrvsosporium and Merulius (Phlebia) tremellosus were compared in shake flasks for their ability to produce laccase, lignin peroxidase(s) and manganese-dependent peroxidase(s) and to remove color from a medium containing effluent. Softwood bleaching effluents were treated by carrier-immobilized P. radiata in 2 1 bioreactors and a 10 1 BiostatR -fermentor. Dechlorination was followed using Cl ion and AOX determinations. All fungi removed the color of the effluent. In P. radiata cultivations AOX decrease was ca. 4 mg l−1 in one day. Apparent lignin peroxidase activities as determined by veratryl alcohol oxidation method were negligible or zero in a medium with AOX content of ca. 60 mg l−1, prepared using about 20 % (v/v) of softwood effluent. However, the purification of extracellular enzymes implied that large amounts of lignin peroxidases were present in the medium and, after the purification, in active form. Enzyme proteins were separated using anion exchange chromatography, and they were further characterized by electrophoresis (SDS-PAGE) to reveal the kind of enzymes that were present during AOX decrease and color removal. The most characteristic lignin peroxidase isoenzymes in effluent media were LiP2 and LiP3.


2019 ◽  
Vol 26 (14) ◽  
pp. 2475-2484 ◽  
Author(s):  
Congqiang Zhang ◽  
Heng-Phon Too

Lignocellulose is the most abundant renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose materials into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can transform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or ‘industrial workhorse’ organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed.


Sign in / Sign up

Export Citation Format

Share Document