white rot fungi
Recently Published Documents


TOTAL DOCUMENTS

1077
(FIVE YEARS 150)

H-INDEX

73
(FIVE YEARS 3)

Author(s):  
Daniela Chmelová ◽  
Barbora Legerská ◽  
Jana Kunstová ◽  
Miroslav Ondrejovič ◽  
Stanislav Miertuš


2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Siti Maryam Salamah Ab Rhaman ◽  
Laila Naher ◽  
Shafiquzzaman Siddiquee

Mushrooms are popular due to the nutrition contents in the fruit bodies and are relatively easy to cultivate. Mushrooms from the white-rot fungi group can be cultivated on agricultural biomass such as sawdust, paddy straw, wheat straw, oil palm frond, oil palm empty fruit bunches, oil palm bark, corn silage, corn cobs, banana leaves, coconut husk, pineapple peel, pineapple leaves, cotton stalk, sugarcane bagasse and various other agricultural biomass. Mushrooms are exceptional decomposers that play important roles in the food web to balance the ecosystems. They can uptake various minerals, including essential and non-essential minerals provided by the substrates. However, the agricultural biomass used for mushroom cultivation is sometimes polluted by heavy metals because of the increased anthropogenic activities occurring in line with urbanisation. Due to their role in mycoremediation, the mushrooms also absorb pollutants from the substrates into their fruit bodies. This article reviews the sources of agricultural biomass for mushroom cultivation that could track how the environmental heavy metals are accumulated and translocated into mushroom fruit bodies. This review also discusses the possible health risks from prolonged uptakes of heavy metal-contaminated mushrooms to highlight the importance of early contaminants’ detection for food security.



2021 ◽  
Vol 23 (12) ◽  
pp. 431-441
Author(s):  
Mahesha V ◽  
◽  
Dr. Chitra P ◽  
R. Ragunathan ◽  
◽  
...  

Increasing discharge and improper management of liquid and solid industrial wastes have created a great concern among industrialists and the scientific community over their economic treatment and safe disposal. Hence, there is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation for these industries released into the environment and to safeguard the ecosystem. In this regard, recent advances in wastewater of heavy metal have propelled bioremediation as a prospective alternative to conventional techniques. Heavy metals are toxic and dangerous to the ecosystem. White rot fungi (WRF) are versatile and robust organisms having enormous potential for oxidative bioremediation of a variety of toxic chemical pollutants due to high tolerance to toxic substances in the environment. The decolorization and detoxification potential of WRF can be harnessed thanks to emerging knowledge of the physiology of these organisms as well as of the bio catalysis and stability characteristics of their enzymes. This knowledge will need to be transformed into reliable and robust waste treatment processes.



2021 ◽  
Vol 9 (12) ◽  
pp. 2595
Author(s):  
Yu Zhang ◽  
Zhongqi Dong ◽  
Yuan Luo ◽  
En Yang ◽  
Huini Xu ◽  
...  

Manganese peroxidases (MnPs), gene family members of white-rot fungi, are necessary extracellular enzymes that degrade lignocellulose and xenobiotic aromatic pollutants. However, very little is known about the diversity and expression patterns of the MnP gene family in white-rot fungi, especially in contrast to laccases. Here, the gene and protein sequences of eight unique MnP genes of T. trogii S0301 were characterized. Based on the characteristics of gene sequence, all TtMnPs here belong to short-type hybrid MnP (type I) with an average protein length of 363 amino acids, 5–6 introns, and the presence of conserved cysteine residues. Furthermore, analysis of MnP activity showed that metal ions (Mn2+ and Cu2+) and static liquid culture significantly influenced MnP activity. A maximum MnP activity (>14.0 U/mL) toward 2,6-DMP was observed in static liquid culture after the addition of Mn2+ (1 mM) or Cu2+ (0.2 or 2 mM). Moreover, qPCR analysis showed that Mn2+ obviously upregulated the Group I MnP subfamily (T_trogii_09901, 09904, 09903, and 09906), while Cu2+ and H2O2, along with changing temperatures, mainly induced the Group II MnP subfamily (T_trogii_11984, 11971, 11985, and 11983), suggesting diverse functions of fungal MnPs in growth and development, stress response, etc. Our studies here systematically analyzed the gene structure, expression, and regulation of the TtMnP gene family in T. trogii, one of the important lignocellulose-degrading fungi, and these results extended our understanding of the diversity of the MnP gene family and helped to improve MnP production and appilications of Trametes strains and other white-rot fungi.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12625
Author(s):  
Yoonhee Cho ◽  
Ji Seon Kim ◽  
Yu-Cheng Dai ◽  
Yusufjon Gafforov ◽  
Young Woon Lim

Genus Xylodon consists of white-rot fungi that grow on both angiosperms and gymnosperms. With resupinate and adnate basidiomes, Xylodon species have been classified into other resupinate genera for a long time. Upon the integration of molecular assessments, the taxonomy of the genus has been revised multiple times over the years. However, the emendations were poorly reflected in studies and public sequence databases. In the present study, the genus Xylodon in Korea was evaluated using molecular and morphological analyses of 172 specimens collected in the period of 2011 to 2018. The host types and geographical distributions were also determined for species delimitation. Furthermore, public sequences that correspond to the Xylodon species in Korea were assessed to validate their identities. Nine Xylodon species were identified in Korea, with three species new to the country. Morphological differentiation and identification of some species were challenging, but all nine species were clearly divided into well-resolved clades in the phylogenetic analyses. Detailed species descriptions, phylogeny, and a key to Xylodon species in Korea are provided in the present study. A total of 646 public ITS and nrLSU sequences corresponding to the nine Xylodon species were found, each with 404 (73.1%) and 57 (61.3%) misidentified or labeled with synonymous names. In many cases, sequences released before the report of new names have not been revised or updated. Revisions of these sequences are arranged in the present study. These amendments may be used to avoid the misidentification of future sequence-based identifications and concurrently prevent the accumulation of misidentified sequences in GenBank.





Author(s):  
Victor T. Omoni ◽  
Cynthia N. Ibeto ◽  
Alfonso J. Lag-Brotons ◽  
Paul O. Bankole ◽  
Kirk T. Semple


2021 ◽  
Author(s):  
Shiran Barber-Zucker ◽  
Vladimir Mindel ◽  
Eva Garcia-Ruiz ◽  
Jonathan Jacob Weinstein ◽  
Miguel Alcalde ◽  
...  

White-rot fungi secrete a repertoire of high-redox potential oxidoreductases to efficiently decompose lignin. Of these enzymes, versatile peroxidases (VPs) are the most promiscuous biocatalysts. VPs are attractive enzymes for research and industrial use, but their recombinant production is extremely challenging. To date, only a single VP has been structurally characterized and optimized for recombinant functional expression, stability and activity. Computational enzyme optimization methods can be applied to many enzymes in parallel, but they require accurate structures. Here, we demonstrate that model structures computed by deep-learning based ab initio structure prediction methods are reliable starting points for one-shot PROSS stability-design calculations. Four designed VPs encoding as many as 43 mutations relative to the wild type enzymes are functionally expressed in yeast whereas their wild type parents are not. Three of these designs exhibit substantial and useful diversity in reactivity profile and tolerance to environmental conditions. The reliability of the new generation of structure predictors and design methods increases the scale and scope of computational enzyme optimization, enabling efficient discovery and exploitation of the functional diversity in natural enzyme families.



ACS Omega ◽  
2021 ◽  
Author(s):  
Mingyang Hu ◽  
Lin Yuan ◽  
Ziyuan Cai ◽  
Jingjing Zhang ◽  
Dandan Ji ◽  
...  


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1708
Author(s):  
Nico D. Fessner ◽  
Christopher Grimm ◽  
Wolfgang Kroutil ◽  
Anton Glieder

Functionalisation of polycyclic aromatic hydrocarbons (PAHs) and their N-heteroarene analogues (NPAHs) is a tedious synthetic endeavour that requires diverse bottom-up approaches. Cytochrome P450 enzymes of white-rot fungi were shown to participate in the fungal detoxification of xenobiotics and environmental hazards via hydroxylation of PAH compounds. In this paper, the recently discovered activity of the monooxygenase CYP5035S7 towards (N)PAHs was investigated in detail, and products formed from the substrates azulene, acenaphthene, fluorene, anthracene, and phenanthrene by whole-cell biocatalysis were isolated and characterised. The observed regioselectivity of CYP5035S7 could be explained by a combination of the substrate’s electron density and steric factors influencing the substrate orientation giving insight into the active-site geometry of the enzyme.



Sign in / Sign up

Export Citation Format

Share Document