chemical pretreatment
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 104)

H-INDEX

37
(FIVE YEARS 7)

Chemosphere ◽  
2022 ◽  
pp. 133617
Author(s):  
Preethi ◽  
Rajesh Banu J ◽  
Sunita Varjani ◽  
Sivashanmugam P ◽  
Vinay Kumar Tyagi ◽  
...  

Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 121961
Author(s):  
Dan Zhang ◽  
Huan He ◽  
Yi Ren ◽  
Rizwan Haider ◽  
Michael Urynowicz ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 254
Author(s):  
Magdalena Zborowska ◽  
Hanna Waliszewska ◽  
Boguslawa Waliszewska ◽  
Slawomir Borysiak ◽  
Jakub Brozdowski ◽  
...  

The aim of the study was to determine the quantitative and qualitative changes taking place in biomass components actively participating in methane fermentation, i.e., in carbohydrates, as a result of chemical pretreatment. Analyses were conducted on agricultural waste (corn stover, also called corn straw, and corncobs) as materials most commonly used in methane fermentation, as well as poplar wood, a material relatively rarely used in biogas production. Pretreatment with the aim of increasing efficiency of methane fermentation was carried out with the use of acid and alkaline solutions of different concentrations. The effect of pretreatment on carbohydrates was analyzed based on the quantitative and qualitative changes in this component. Due to the structural heterogeneity of carbohydrates, their varied reactivity and fermentability were determined in terms of holocellulose, cellulose, and pentosans. The chemical structure of cellulose was also analyzed. It is shown in this study that chemical pretreatment causes transformations of carbohydrate components, which differ quantitatively and qualitatively in the compared raw materials. It was found that the alkaline treatment caused smaller changes in the percentage shares of the carbohydrate biomass components as compared to the acid treatment. Moreover, it was observed that the compared materials differ in terms of quantitative changes in their chemical composition depending on the composition of the raw material prior to pretreatment. In the case of corn waste subjected to the action of 1 and 3% NaOH, the share of pentosans in the biomass increased. It was established that this is a change with a positive effect on fermentation efficiency. The action of acids and alkalis on the biomass led to similar structural changes in cellulose, which are adverse for the fermentation process.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 68
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Antonio M. Borrero-López ◽  
Concepción Valencia ◽  
...  

In order to identify new sustainable sources for producing cellulose nanofibers (CNFs), fast-growing poplar (Populus alba L.) wood was evaluated herein. For that purpose, bleached poplar kraft pulp was produced and submitted to TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) mediated oxidation (TEMPO-ox) chemical pretreatment followed by microfluidization. The resulting CNFs were thoroughly characterized, including a rheological study at different pH values. Poplar CNFs showed properties comparable to eucalypt CNFs (reference material for CNFs production), showing high carboxylate content (1048 ± 128 µmol g−1), fibrillation yield (87.3% ± 8.1%), optical transmittance (83% at 700 nm) and thermal stability (up to more than 200 °C). Regarding the rheological study, whereas pH from 4 to 10 did not produce significant changes in rheological behavior, a reduction of pH down to 1 led to an order-of-magnitude increase on the viscoelastic functions. Therefore, poplar CNF shows potential in the pH-sensitive hydrogels application field. Finally, the possible ecotoxicity of poplar CNF was assessed. The decrease in cell viability was very low so that only concentrations causing a 10% cytotoxicity could be calculated for the assay detecting alterations in cell metabolism (10 µg mL−1) and plasma membrane integrity (60 µg mL−1).


Author(s):  
Xianqing Lv ◽  
Guangxu Yang ◽  
Zhenggang Gong ◽  
Xin Cheng ◽  
Li Shuai ◽  
...  

Chemical pretreatment followed by enzymatic hydrolysis has been regarded as a viable way to produce fermentable sugars. Phenylsulfonic acid (PSA) pretreatment could efficiently fractionate the non-cellulosic components (hemicelluloses and lignin) from bamboo and result in increased cellulose accessibility that was 10 times that of untreated bamboo. However, deposited lignin could trigger non-productive adsorption to enzymes, which therefore significantly decreased the enzymatic hydrolysis efficiency of PSA-pretreated bamboo substrates. Herein, poly(N-vinylcaprolactam) (PNVCL), a non-ionic surfactant, was developed as a novel additive for overcoming the non-productive adsorption of lignin during enzymatic hydrolysis. PNVCL was found to be not only more effective than those of commonly used lignosulfonate and polyvinyl alcohol for overcoming the negative effect of lignin, but also comparable to the robust Tween 20 and bovine serum albumin additives. A PNVCL loading at 1.2 g/L during enzymatic hydrolysis of PSA pretreated bamboo substrate could achieve an 80% cellulosic enzymatic conversion and meanwhile reduce the cellulase loading by three times as compared to that without additive. Mechanistic investigations indicated that PNVCL could block lignin residues through hydrophobic interactions and the resultant PNVCL coating resisted the adsorption of cellulase via electrostatic repulsion and/or hydration. This practical method can improve the lignocellulosic enzymatic hydrolysis efficiency and thereby increase the productivity and profitability of biorefinery.


2021 ◽  
Vol 23 (2) ◽  
pp. 25-34
Author(s):  
M. O. Kazeem ◽  
K. A. Ajijolakewu ◽  
A.M. Ahmed El - Imam ◽  
R. B. Salau

Effective pretreatment is crucial for cellulase production from sugarcane bagasse. Pretreatment with tamarind extract could reduce the hazardous effect associated with chemical pretreatment. The present work investigated tamarind (Tamarindus indica) extract in combination with H2SO4 and thermal pretreatment of sugarcane bagasse for cellulase production by Aspergillus flavus. The sugarcane bagasse was pretreated with tamarind extract pH 2 and pH 4, followed by 1% H2SO4 and thermal treatment at 121°C for 15 min. The pretreatment slurry was analysed for reducing sugar while solid bagasse was analysed for weight loss. Aspergillus flavus grew on sugarcane bagasse under solid state fermentation and the Carboxy Methyl Cellulase (CMCase) and Filter Paper Assay (FPA) activities were compared on the various pretreatments. The pretreatments changed the visible morphology of the sugarcane bagasse observed by the swelling, fibrous appearance and colour change. Pretreatment slurry yielded highest soluble reducing sugar at 60.01 mg/ml in tamarind extract (pH 4/1% H2SO4 ) and highest weight  loss of solids at 73.70% in tamarind extract (pH 2/1% H2SO4 /thermal 121°C). Aspergillus flavus performed better on tamarind extract (pH 2/1% H2SO4 ) by producing optimal CMCase and FPA activities at 0.100 U/ml and 0.409 U/ml respectively after 3 days of fermentation. Cellulase was maximally active at temperature of 50 °C. The tamarind extract pretreatment successfully proved to be an alternative organo-chemical pretreatment of sugarcane bagasse as evidenced by the physical properties, soluble reducing sugars and cellulase activities. Keywords: Aspergillus flavus, Cellulase, Pretreatment, Sugarcane bagasse, Tamarind extract


Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121242
Author(s):  
C.N. Kowthaman ◽  
V. Arul Mozhi Selvan ◽  
P. Senthil Kumar

Sign in / Sign up

Export Citation Format

Share Document