Well-Balanced Central-Upwind Schemes for $$2\,\times \,2$$ Systems of Balance Laws

Author(s):  
Alina Chertock ◽  
Michael Herty ◽  
Şeyma Nur Özcan
Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.


2003 ◽  
Vol 13 (04) ◽  
pp. 527-543 ◽  
Author(s):  
PAOLA GOATIN

Uniqueness of solutions of genuinely nonlinear n × n strictly hyperbolic systems of balance laws is established moving from Oleïnik-type decay estimates. As middle step, the result relies on the fulfillment of a condition which controls the local oscillation of the solution in a forward neighborhood of each point in the t–x plane.


Sign in / Sign up

Export Citation Format

Share Document