scholarly journals Collocation Methods for High-Order Well-Balanced Methods for Systems of Balance Laws

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.

Author(s):  
Michael Dumbser ◽  
Claus-Dieter Munz

On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin SchemesThis article is devoted to the discretization of source terms and boundary conditions using discontinuous Galerkin schemes with an arbitrary high order of accuracy in space and time for the solution of hyperbolic conservation laws on unstructured triangular meshes. The building block of the method is a particular numerical flux function at the element interfaces based on the solution of Generalized Riemann Problems (GRPs) with piecewise polynomial initial data. The solution of the generalized Riemann problem, originally introduced by Toro and Titarev in a finite volume context, provides simultaneously a numerical flux function as well as a time integration method. The resulting scheme is extremely local since it integrates the PDE from one time step to the successive one in a single step using only information from the direct side neighbors. Since source terms are directly incorporated into the numerical flux via the solution of the GRP, our very high order accurate method is also able to maintain very well smooth steady-state solutions of PDEs with source terms, similar to the so-called well-balanced schemes which are usually specially designed for this purpose. Boundary conditions are imposed solving inverse generalized Riemann problems. Furthermore, we show numerical evidence proving that by using very high order schemes together with high order polynomial representations of curved boundaries, high quality solutions can be obtained on very coarse meshes.


2021 ◽  
Vol 394 ◽  
pp. 125820
Author(s):  
Irene Gómez-Bueno ◽  
Manuel J. Castro ◽  
Carlos Parés

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Ernesto Guerrero Fernández ◽  
Cipriano Escalante ◽  
Manuel J. Castro Díaz

This work introduces a general strategy to develop well-balanced high-order Discontinuous Galerkin (DG) numerical schemes for systems of balance laws. The essence of our approach is a local projection step that guarantees the exactly well-balanced character of the resulting numerical method for smooth stationary solutions. The strategy can be adapted to some well-known different time marching DG discretisations. Particularly, in this article, Runge–Kutta DG and ADER DG methods are studied. Additionally, a limiting procedure based on a modified WENO approach is described to deal with the spurious oscillations generated in the presence of non-smooth solutions, keeping the well-balanced properties of the scheme intact. The resulting numerical method is then exactly well-balanced and high-order in space and time for smooth solutions. Finally, some numerical results are depicted using different systems of balance laws to show the performance of the introduced numerical strategy.


Sign in / Sign up

Export Citation Format

Share Document