boundary feedback
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 51)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
pp. 1-38
Author(s):  
Marianna A. Shubov

The distribution of natural frequencies of the Euler–Bernoulli beam resting on elastic foundation and subject to an axial force in the presence of several damping mechanisms is investigated. The damping mechanisms are: ( i ) an external or viscous damping with damping coefficient ( − a 0 ( x )), ( ii ) a damping proportional to the bending rate with the damping coefficient a 1 ( x ). The beam is clamped at the left end and equipped with a four-parameter (α, β, κ 1 , κ 2 ) linear boundary feedback law at the right end. The 2 × 2 boundary feedback matrix relates the control input (a vector of velocity and its spacial derivative at the right end) to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space of the system. The dynamics generator has a purely discrete spectrum (the vibrational modes). Explicit asymptotic formula for the eigenvalues as the number of an eigenvalue tends to infinity have been obtained. It is shown that the boundary control parameters and the distributed damping play different roles in the asymptotical formulas for the eigenvalues of the dynamics generator. Namely, the damping coefficient a 1 and the boundary controls κ 1 and κ 2 enter the leading asymptotical term explicitly, while damping coefficient a 0 appears in the lower order terms.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fushou Liu ◽  
Dongping Jin

The paper presents a high-efficient finite difference method for solving the PDE model of the single-link flexible manipulator system with boundary feedback control. Firstly, an abstract state-space model of the manipulator is derived from the original PDE model and the associated boundary conditions of the manipulator by using the velocity and bending curvature of the flexible link as the state variables. Then, the second-order implicit Crank-Nicolson scheme is adopted to discretize the state-space equation, and the second-order one-sided approximation is used to discretize the boundary conditions with excitations and feedback control. At last, the state-space equation combined with the boundary conditions of the flexible manipulator is transformed to a system of linear algebraic equations, from which the response of the flexible manipulator can be easily solved. Numerical simulations are carried out to simulate the manipulator under various excitations and boundary feedback control. The results are compared with ANSYS to demonstrate the accuracy and high efficiency of the presented method.


2021 ◽  
Author(s):  
Zhan-Mei Yuan ◽  
Hua-Cheng Zhou

Abstract In this paper, we investigate the event-triggered boundary feedback control problem for an unstable time fractional wave equation with unknown perturbation at the boundary. To cope with the instability of system when there is no disturbance, the backstepping method is adopted to convert the original unstable system into a stable system. An UDE-based estimator based on low-pass filter is proposed to estimate unknown time-varying input disturbance. With the estimation of disturbance, the event-triggered boundary feedback controller is proposed. It is shown that the event-triggered strategy could asymptotically stabilize system and a positive lower bounded of minimum inter-event time is ensured to exclude the Zeno phenomenon.


Sign in / Sign up

Export Citation Format

Share Document