Chemical Characterization of Volatile Organic Compounds (VOCs) Through Headspace Solid Phase Micro Extraction (SPME)

Author(s):  
Fabrizio Araniti ◽  
Sebastiano Pantò ◽  
Antonio Lupini ◽  
Francesco Sunseri ◽  
Maria Rosa Abenavoli
Author(s):  
Antonia Flores ◽  
Silvia Sorolla ◽  
Concepció Casas ◽  
Rosa Cuadros ◽  
Anna Bacardit

Volatile organic compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) arise from the chemicals used in the various stages of the leather manufacturing process. An important aim of the tanning industry is to minimize or eliminate VOCs and SVOCs, without lowering the quality of leather.   This paper shows the development of a new headspace-solid phase micro extraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) method for the identification of VOCs and SVOCs emitted by newly designed polymers for the leather finishing operation. These new polymers are polyurethane resins designed to reduce the VOC and SVOC concentration. This method enables a simple and fast determination of the qualitative and semi-quantitative content of VOCs and SVOCs in polyurethane-type finishing resins. The chemicals that are of concern in this paper are the following: Dipropylene glycol Monomethyl Ether (DPGME), DBE-3 (a mixture of dibasic esters) and Triethylamine (TEA). The test conditions that have been determined to carry out the HS-SPME assay are the following: incubation time (2 hours), extraction temperature and time (40°C; 5 minutes) and the desorption conditions (280°C, 50 seconds).  Ten samples of laboratory scale resins were tested by HS-SPME followed by gas chromatography (GC-MS). DPGME and DBE-3 (a mixture of dimethyl adipate, dimethyl glutarate and dimethyl succinate) have been identified effectively. The compounds are identified by a quantitative method using external calibration curves for the target compounds. The technique is not effective to determine the TEA compound, since the chromatograms shown poor resolution peaks for the standard. 


2010 ◽  
Vol 30 (4) ◽  
pp. 987-992 ◽  
Author(s):  
Eunice Valduga ◽  
Alexsandra Valerio ◽  
Helen Treichel ◽  
Irajá Nascimento Filho ◽  
Agenor Fúrigo Júnior ◽  
...  

2020 ◽  
Vol 9 (10) ◽  
pp. e5069108880
Author(s):  
Paulo Herbesson Pereira de Sousa ◽  
Cláudia Inês da Silva ◽  
Breno Magalhães Freitas ◽  
Tigressa Helena Rodrigues Soares ◽  
Isac Gabriel Abrahao Bomfim ◽  
...  

This study tested three types of Solid-Phase Microextraction fibers in developing a method to extract volatile organic compounds present in the diet of immature Centris analis. Samples were placed in glass vials with metal lids and added with 3g NaCl and 8 ml deionized water. Extraction and characterization were carried out using a Headspace – Solid Phase Microextraction (HS-SPME) with Gas Chromatography – Mass Spectrometry, and the three types of fibers were polydimethylsiloxane (PDMS), divinylbenzene/ carboxen/ polydimethylsiloxane (DVB/CAR/PDMS) and carboxen/ polydimethylsiloxane (CAR/PDMS). Each type of fiber was exposed to volatiles for 30 min and analyzed in a chromatograph Agilent GC-MS equipped with a quadrupole detector (MSD 5977A), containing a HP-5MS (30 m x 0.25 mm x 0.25 µm) column and Helium as the carrier gas (1 ml.min-1). The CAR / PDMS fiber favored the extraction of volatile compounds to semi-volatile compounds, followed by DVB / CAR / PDMS, while PDMS presented a lower number of extracted compounds, which can be attributed to its apolar nature. The volatile compounds identified in the diet included alcohols, aldehydes, esters, ketones, and terpenes. The SPME technique has proven effective in the extraction of volatile organic compounds from immature of Centris analis diet, being the CAR/PDMS the most suitable fiber for this.


Sign in / Sign up

Export Citation Format

Share Document