SERL: Semantic-Path Biased Representation Learning of Heterogeneous Information Network

Author(s):  
Haining Tan ◽  
Weiqiang Tang ◽  
Xinxin Fan ◽  
Quanliang Jing ◽  
Jingping Bi
2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2020 ◽  
Vol 34 (01) ◽  
pp. 238-245
Author(s):  
Haiwen Wang ◽  
Ruijie Wan ◽  
Chuan Wen ◽  
Shuhao Li ◽  
Yuting Jia ◽  
...  

Author name ambiguity causes inadequacy and inconvenience in academic information retrieval, which raises the necessity of author name disambiguation (AND). Existing AND methods can be divided into two categories: the models focusing on content information to distinguish whether two papers are written by the same author, the models focusing on relation information to represent information as edges on the network and to quantify the similarity among papers. However, the former requires adequate labeled samples and informative negative samples, and are also ineffective in measuring the high-order connections among papers, while the latter needs complicated feature engineering or supervision to construct the network. We propose a novel generative adversarial framework to grow the two categories of models together: (i) the discriminative module distinguishes whether two papers are from the same author, and (ii) the generative module selects possibly homogeneous papers directly from the heterogeneous information network, which eliminates the complicated feature engineering. In such a way, the discriminative module guides the generative module to select homogeneous papers, and the generative module generates high-quality negative samples to train the discriminative module to make it aware of high-order connections among papers. Furthermore, a self-training strategy for the discriminative module and a random walk based generating algorithm are designed to make the training stable and efficient. Extensive experiments on two real-world AND benchmarks demonstrate that our model provides significant performance improvement over the state-of-the-art methods.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1671
Author(s):  
Jibing Gong ◽  
Cheng Wang ◽  
Zhiyong Zhao ◽  
Xinghao Zhang

In MOOCs, generally speaking, curriculum designing, course selection, and knowledge concept recommendation are the three major steps that systematically instruct users to learn. This paper focuses on the knowledge concept recommendation in MOOCs, which recommends related topics to users to facilitate their online study. The existing approaches only consider the historical behaviors of users, but ignore various kinds of auxiliary information, which are also critical for user embedding. In addition, traditional recommendation models only consider the immediate user response to the recommended items, and do not explicitly consider the long-term interests of users. To deal with the above issues, this paper proposes AGMKRec, a novel reinforced concept recommendation model with a heterogeneous information network. We first clarify the concept recommendation in MOOCs as a reinforcement learning problem to offer a personalized and dynamic knowledge concept label list to users. To consider more auxiliary information of users, we construct a heterogeneous information network among users, courses, and concepts, and use a meta-path-based method which can automatically identify useful meta-paths and multi-hop connections to learn a new graph structure for learning effective node representations on a graph. Comprehensive experiments and analyses on a real-world dataset collected from XuetangX show that our proposed model outperforms some state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document