Plant Parasitic Nematodes of the Pacific Northwest: Idaho, Oregon and Washington

Author(s):  
Inga A. Zasada ◽  
Louise-Marie Dandurand ◽  
Cynthia Gleason ◽  
Christina H. Hagerty ◽  
Russell E. Ingham
2019 ◽  
Vol 20 (1) ◽  
pp. 20-28 ◽  
Author(s):  
Inga A. Zasada ◽  
Megan Kitner ◽  
Catherine Wram ◽  
Nadine Wade ◽  
Russell E. Ingham ◽  
...  

The Pacific Northwest (PNW) of the United States (Idaho, Oregon, and Washington) is a diverse agricultural production area with over 400 different commodities grown in the region. Plant-parasitic nematodes are a constraint to the production of many of these commodities. Soil sample data from 2012 to 2016 were obtained from nematode diagnostic laboratories in the region to assess trends in occurrence, population densities, and distribution of plant-parasitic nematodes in the PNW. A total of 38,022 unique data points were analyzed. The number of plant-parasitic nematode samples processed in the PNW by diagnostic laboratories has significantly increased from 2012 to 2016. Fifteen genera of plant-parasitic nematodes were identified by diagnostic laboratories, with 86% of the samples in the PNW containing at least one plant-parasitic nematode genus. These laboratories provide a valuable service to agriculture in the PNW. Additionally, they serve as a rich source of information on plant-parasitic nematode distribution, occurrence, and abundance that, when analyzed, provides an empirical basis upon which to interpret individual grower reports and make management recommendations.


2021 ◽  
pp. 192-198
Author(s):  
Inga Zasada ◽  
Tom Forge

Abstract Plant parasitic nematodes are a constraint to the production of wine grapes worldwide. In the Pacific Northwest (PNW) of North America, including British Columbia (BC) in Canada and Oregon (OR) and Washington (WA) in the United States, the impact of plant parasitic nematodes, specifically ectoparasitic nematodes, on wine grape production has not been extensively studied or documented. This chapter discusses the economic importance, geographical distribution, host range, damage symptoms, biology and life cycle, interactions with other nematodes and pathogens, and recommended integrated management of Mesocriconema xenoplax and Xiphinema americanum infesting grapes in North America. Future research requirements and future developments are also mentioned.


Plant Disease ◽  
2013 ◽  
Vol 97 (4) ◽  
pp. 537-546 ◽  
Author(s):  
Richard W. Smiley ◽  
Stephen Machado ◽  
Jennifer A. Gourlie ◽  
Larry C. Pritchett ◽  
Guiping Yan ◽  
...  

There is interest in converting rainfed cropping systems in the Pacific Northwest from a 2-year rotation of winter wheat and cultivated fallow to direct-seed (no-till) systems that include chemical fallow, spring cereals, and food legume and brassica crops. Little information is available regarding effects of these changes on plant-parasitic nematodes. Eight cropping systems in a low-precipitation region (<330 mm) were compared over 9 years. Each phase of each rotation occurred each year. The density of Pratylenchus spp. was greater in cultivated than chemical fallow, became greater with increasing frequency of host crops, and was inversely associated with precipitation (R2 = 0.92, α < 0.01). Densities after harvesting mustard, spring wheat, winter wheat, and winter pea were greater (α < 0.01) than after harvesting spring barley or spring pea. Camelina also produced low densities. Winter wheat led to a greater density of Pratylenchus neglectus and spring wheat led to a greater density of P. thornei. Density of Pratylenchus spp. was correlated (R2 = 0.88, α < 0.01) but generally higher when detected by real-time polymerase chain reaction on DNA extracts from soil than when detected by a traditional method. Selection of different Pratylenchus spp. by different wheat cultivars or growth habit must be addressed to minimize the level of nematode risk to future plantings of intolerant crops.


EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


Sign in / Sign up

Export Citation Format

Share Document