Beyond Plate Tectonics — From a Phenomenological to a Causative View on Global Tectonics and Earthquake Activity

Author(s):  
A. Vogel
2020 ◽  
Author(s):  
Mohammad Bagherbandi ◽  
Nureldin A. A. Gido

<p>The principle of isostasy plays an important role to understand the relation between different geodynamic processes. Although, it is difficult to find an exact method that delivers a complete image of the Earth structure. However, gravimetric methods are alternative to provide images of the interior of the Earth. The Earth’s crust parameters, i.e. crustal depth and crust-mantle density contrast, can reveal adequate information about the solid Earth system such as volcanic activity, earthquake and continental rifting. Hence, in this study, a combine Moho model using seismic and gravity data is determined to investigate the relationship between the isostatic state of the lithosphere and seismic activities in East Africa. Our results show that isostatic equilibrium and compensation states are closely correlated to the seismicity patterns in the study area. For example, several studies suggest that African superplume causes the rift valley, and consequently differences in crustal and mantle densities occur. This paper presents a method to determine the crustal thickness and crust-mantle density contrast and consequently one can observe low-density contrast (about 200 kg/m<sup>3</sup> ) and thin crust (about 30 km) near the triple junction plate tectonics in East Africa (Afar Triangle), which confirms the state of overcompensation in the rift valley areas. Furthermore, the density structure of the lithosphere shows a large correlation with the earthquake activity, sub-crustal stress and volcanic distribution across East Africa.</p>


2021 ◽  
pp. M58-2021-12
Author(s):  
Michael A. Summerfield

AbstractThe plate tectonics revolution was the most significant advance in our understanding of the Earth in the 20th century, but initially it had little impact on the discipline of geomorphology. Topography and landscape development were not considered to be important phenomena that deserved attention from the broader earth-science community in the context of the new model of global tectonics. This situation began to change from the 1980s as various technical innovations enabled landscape evolution to be modelled numerically at the regional to sub-continental scales relevant to plate tectonics, and rates of denudation to be quantified over geological time scales. These developments prompted interest amongst earth scientists from fields such as geophysics, geochemistry and geochronology in understanding the evolution of topography, the role of denudation in influencing patterns of crustal deformation, and the interactions between tectonics and surface processes. This trend was well established by the end of the century, and has become even more significant up to the present. In this chapter I review these developments and illustrate how plate tectonics has been related to landscape development, especially in the context of collisional orogens and passive continental margins. I also demonstrate how technical innovations have been pivotal to the expanding interest in macroscale landscape development in the era of plate tectonics, and to the significant enhancement of the status of the discipline of geomorphology in the earth sciences over recent decades.


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


2006 ◽  
Vol 17 (7) ◽  
pp. 209-253
Author(s):  
Pavel M. Goryainov ◽  
G. Yu. Ivanyuk ◽  
A. O. Kalashnikov
Keyword(s):  

2016 ◽  
Author(s):  
Alec Bodzin ◽  
◽  
David Anastasio ◽  
Raghida Sharif ◽  
Scott Rutzmoser

Sign in / Sign up

Export Citation Format

Share Document