continental drift
Recently Published Documents


TOTAL DOCUMENTS

951
(FIVE YEARS 61)

H-INDEX

52
(FIVE YEARS 2)

2022 ◽  
Vol 105 (1) ◽  
pp. 003685042110642
Author(s):  
James Lawrence Powell

The progress of science has sometimes been unjustifiably delayed by the premature rejection of a hypothesis for which substantial evidence existed and which later achieved consensus. Continental drift, meteorite impact cratering, and anthropogenic global warming are examples from the first half of the twentieth century. This article presents evidence that the Younger Dryas Impact Hypothesis (YDIH) is a twenty-first century case. The hypothesis proposes that the airburst or impact of a comet ∼12,850 years ago caused the ensuing ∼1200-year-long Younger Dryas (YD) cool period and contributed to the extinction of the Pleistocene megafauna in the Western Hemisphere and the disappearance of the Clovis Paleo-Indian culture. Soon after publication, a few scientists reported that they were unable to replicate the critical evidence and the scientific community at large came to reject the hypothesis. By today, however, many independent studies have reproduced that evidence at dozens of YD sites. This article examines why scientists so readily accepted the early false claims of irreproducibility and what lessons the premature rejection of the YDIH holds for science.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gianluca Sottili ◽  
Sebastien Lambert ◽  
Danilo Mauro Palladino

In this paper, we examine the origins and the history of the hypothesis for an influence of tidal forces on volcanic activity. We believe that exploring this subject through a historical perspective may help geoscientists gain new insights in a field of research so closely connected with the contemporary scientific debate and often erroneously considered as a totally separated niche topic. The idea of an influence of the Moon and Sun on magmatic processes dates back to the Hellenistic world. However, it was only since the late 19th century, with the establishment of volcano observatories at Mt. Etna and Vesuvius allowing a systematic collection of observations with modern methods, that the “tidal controversy” opened one of the longest and most important debates in Earth Science. At the beginning of the 20th century, the controversy assumed a much more general significance, as the debate around the tidal influence on volcanism developed around the formulation of the first modern theories on the origins of volcanism, the structure of the Earth’s interior and the mechanisms for continental drift. During the same period, the first experimental evidence for the existence of the Earth tides by Hecker (Beobachtungen an Horizontalpendeln über die Deformation des Erdkörpers unter dem Einfluss von Sonne und MondVeröffentlichung des Königl, 1907, 32), and the Chamberlin–Moulton planetesimal hypothesis (proposed in 1905 by geologist Thomas Chrowder Chamberlin and astronomer Forest Ray Moulton) about the “tidal” origin of the Solar System, influenced and stimulated new researches on volcano-tides interactions, such as the first description of the “lava tide” at the Kilauea volcano by Thomas Augustus Jaggar in 1924. Surprisingly, this phase of gradual acceptance of the tidal hypothesis was followed by a period of lapse between 1930 to late 1960. A new era of stimulating and interesting speculations opened at the beginning of the seventies of the 20th century thanks to the discovery of the moonquakes revealed by the Apollo Lunar Surface Experiment Package. A few years later, in 1979, the intense volcanism on the Jupiter’s moon Io, discovered by the Voyager 1 mission, was explained by the tidal heating produced by the Io’s orbital eccentricity. In the last part of the paper, we discuss the major advances over the last decades and the new frontiers of this research topic, which traditionally bears on interdisciplinary contributions (e.g., from geosciences, physics, astronomy). We conclude that the present-day debate around the environmental crisis, characterized by a large collection of interconnected variables, stimulated a new field of research around the complex mechanisms of mutual interactions among orbital factors, Milankovitch Cycles, climate changes and volcanism.


2021 ◽  
Author(s):  
Menglin Wang ◽  
Simon Hellemans ◽  
Jan Šobotník ◽  
Jigyasa Arora ◽  
Aleš Buček ◽  
...  

AbstractTermites are social cockroaches distributed throughout warm temperate and tropical ecosystems. The ancestor of modern termites (crown-Isoptera) occurred during the earliest Cretaceous, approximately 140 million years ago, suggesting that both vicariance through continental drift and overseas dispersal may have shaped the distribution of early diverging termite lineages. We reconstruct the historical biogeography of three early diverging termite families – Stolotermitidae, Hodotermitidae, and Archotermopsidae – using the nuclear rRNA genes and mitochondrial genomes of 27 samples. Our analyses confirmed the monophyly of Stolotermitidae + Hodotermitidae + Archotermopsidae (clade Teletisoptera), with Stolotermitidae diverging from a monophyletic Hodotermitidae + Archotermopsidae approximately 100.3 Ma (94.3–110.4 Ma, 95% HPD), and with Archotermopsidae paraphyletic to a monophyletic Hodotermitidae. The Oriental Archotermopsis and the Nearctic Zootermopsis diverged 50.8 Ma (40.7–61.4 Ma, 95% HPD) before land connections between the Palearctic region and North America ceased to exist. The African Hodotermes + Microhodotermes diverged from Anacanthotermes, a genus found in Africa and Asia, 32.1 Ma (24.8–39.9 Ma, 95% HPD), and the most recent common ancestor of Anacanthotermes lived 10.7 Ma (7.3–14.3 Ma, 95% HPD), suggesting that Anacanthotermes dispersed to Asia using the land bridge connecting Africa and Eurasia ∼18–20 Ma. In contrast, the common ancestors of modern Porotermes and Stolotermes lived 20.2 Ma (15.7–25.1 Ma, 95% HPD) and 26.6 Ma (18.3–35.6 Ma, 95% HPD), respectively, indicating that the presence of these genera in South America, Africa, and Australia involved over-water dispersals. Our results suggest that early diverging termite lineages acquired their current distribution through a combination of over-water dispersals and dispersal via land bridges. We clarify the classification by resolving the paraphyly of Archotermopsidae, restricting the family to Archotermopsis and Zootermopsis, and elevating Hodotermopsinae (Hodotermopsis) as Hodotermopsidae (status novum).


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1074
Author(s):  
Olaonipekun Oyebanjo ◽  
Nenita Bukalo ◽  
Georges-Ivo Ekosse

The African and South American continents are of great interest in continental drift studies. Hence, this study assesses the possible correlations in the provenance and paleoenvironment of selected Cretaceous Nigerian and Cameroonian (in Africa), and Argentine and Brazilian (in South America) kaolins through an analysis of their mineralogical and geochemical characteristics. On the basis of their mineralogical composition, the Nigerian Lakiri and Brazilian soft Capim River kaolins are predominantly characterised as pure kaolins, whereas the kaolins from Cameroon (except for Yatchika) and Argentina are mainly considered as sandy kaolins. The present study revealed that the Brazilian soft Capim River kaolin had the highest kaolinite structural order, whilst the Argentine Santa Cruz kaolin had the least. The kaolins from Nigeria, Cameroon, and Argentina were dominated by subhedral to anhedral kaolinite crystals relative to the Brazilian kaolin, which possess more euhedral kaolinite crystals. The kaolins were formed by the intense weathering of intermediate to felsic rocks under anoxic conditions, which is consistent with the structural framework of the basins. The average paleotemperatures obtained for the kaolins (except for the one from Santa Cruz) indicates that the paleoweathering took place under tropical climates.


2021 ◽  
pp. 82-113
Author(s):  
Elisabeth Ervin-Blankenheim

This chapter illustrates the most significant revolution in the understanding of the Earth discovered in the last 75 years, plate tectonics. The theory of plate tectonics is the second overarching precept of the field of geology (after the geologic time scale). Plate tectonics and its history as a theory are traced in this chapter. Early explorers and others had noticed the apparent fit in the shapes of the continents, but these ideas were not explicitly stated until Alfred Wegener detailed his evidence for the drift of the continents, though he had no viable mechanism on how the drift would have occurred. World War II technology, including sonar and radar, allowed scientists to understand the ocean floor. Rather than a flat, featureless plain, they found a vast undersea mountain range known as the mid-oceanic ridge that wraps around the world like seams on a baseball. Harry Hess proposed a new mechanism for continental drift through mantle convection cells, causing seafloor spreading. These ideas were confirmed by magnetic surveys and subsequent research, leading to the theory of plate tectonics. A final section looks at the maturation of the theory as geologists continue to learn more details about the movement and intricacies of the tectonic plates.


Author(s):  
Karoliny Gusso Conte ◽  
Pedro Andrés Chira Oliva

Discoveries of hydrocarbons in the basins of the African Equatorial Margin and Guinea Gulf stimulated the exploratory interest in the basins of the Brazilian Equatorial Margin, for being together before the Continental Drift. This interest emerges because both African and South American equatorial margin are considered analogous. The Barreirinhas Basin is a member of the Brazilian equatorial margin. The objective of this work is to present the results obtained through the seismic interpretation and structural 3D modeling, in the context of gravitational tectonics, in an area covered by 3D seismic data, in the Barreirinhas Basin. The compressional domain of an extensive-compressive system was mapped. In this study, were identified reverse faults, thrust faults and fault-related folding like fault-bend and fault-propagation fold that can be accompanied by backthrust features in deep to ultra-deep waters. The 3D structural model allowed the representation of the geometric variations present in the study area. The new information will be important for the identification and evaluation of structures with greater potential for hydrocarbon accumulations and can help in future studies to characterize the reservoir, contributing to the evolution of knowledge of the equatorial margin, especially in the Barreirinhas Basin.


Sign in / Sign up

Export Citation Format

Share Document