Central Mesencephalic Reticular Formation – Role in Eye Movements

2008 ◽  
pp. 611-617
Author(s):  
David M. Waitzman
2015 ◽  
Vol 221 (8) ◽  
pp. 4073-4089 ◽  
Author(s):  
Paul J. May ◽  
Susan Warren ◽  
Martin O. Bohlen ◽  
Miriam Barnerssoi ◽  
Anja K. E. Horn

Author(s):  
Agnes Wong

■ A small saccade of 0.5–3° that takes the eye away from fixation, followed by a saccade that returns the eye back to fixation after about 200 msec (i.e., presence of intersaccadic interval during which visual feedback occurs) ■ So named because of its appearance in eye movement tracings ■ Normal subjects often have square wave jerks (SWJ), but the rate is only 4–6 per minute. ■ Pathologic SWJ occurs at a rate of >15 per minute. ■ Cerebellar diseases Square wave jerks result from damage of projections from the frontal eye field, rostral pole of the superior colliculus, and the central mesencephalic reticular formation to the omnipause cells in the pons. If symptomatic, SWJ may be treated with methylphenidate, diazepam, phenobarbital, or amphetamines. ■ Burst of saccades with defective steps of innervation (i.e., stepless saccades) ■ Conjugate or monocular Saccadic pulses are associated with multiple sclerosis. Saccadic pulses result from damage of omnipause cells or the neural integrator.


1997 ◽  
Vol 78 (4) ◽  
pp. 2164-2175 ◽  
Author(s):  
Ari Handel ◽  
Paul W. Glimcher

Handel, Ari and Paul W. Glimcher. Response properties of saccade-related burst neurons in the central mesencephalic reticular formation. J. Neurophysiol. 78: 2164–2175, 1997. We studied the activity of saccade-related burst neurons in the central mesencephalic reticular formation (cMRF) in awake behaving monkeys. In experiment 1, we examined the activity of single neurons while monkeys performed an average of 225 delayed saccade trials that evoked gaze shifts having horizontal and vertical amplitudes between 2 and 20°. All neurons studied generated high-frequency bursts of activity during some of these saccades. For each neuron, the duration and frequency of these bursts of activity reached maximal values when the monkey made movements within a restricted range of horizontal and vertical amplitudes. The onset of the movement followed the onset of the burst by the longest intervals for movements within a restricted range of horizontal and vertical amplitudes. The range of movements for which this interval was longest varied from neuron to neuron. Across the population, these ranges included nearly all contraversive saccades with horizontal and vertical amplitudes between 2 and 20°. In experiment 2, we used the following task to examine the low-frequency prelude of activity that cMRF neurons generate before bursting: the monkey was required to fixate a light-emitting diode (LED) while two eccentric visual stimuli were presented. After a delay, the color of the fixation LED was changed, identifying one of the two eccentric stimuli as the saccadic target. After a final unpredictable delay, the fixation LED was extinguished and the monkey was reinforced for redirecting gaze to the identified saccadic target. Some cMRF neurons fired at a low frequency during the interval after the fixation LED changed color but before it was extinguished. For many neurons, the firing rate during this interval was related to the metrics of the movement the monkey made at the end of the trial and, to a lesser degree, to the location of the eccentric stimulus to which a movement was not directed.


2020 ◽  
Vol 117 (46) ◽  
pp. 29123-29132 ◽  
Author(s):  
Julie Quinet ◽  
Kevin Schultz ◽  
Paul J. May ◽  
Paul D. Gamlin

During normal viewing, we direct our eyes between objects in three-dimensional (3D) space many times a minute. To accurately fixate these objects, which are usually located in different directions and at different distances, we must generate eye movements with appropriate versional and vergence components. These combined saccade-vergence eye movements result in disjunctive saccades with a vergence component that is much faster than that generated during smooth, symmetric vergence eye movements. The neural control of disjunctive saccades is still poorly understood. Recent anatomical studies suggested that the central mesencephalic reticular formation (cMRF), located lateral to the oculomotor nucleus, contains premotor neurons potentially involved in the neural control of these eye movements. We have therefore investigated the role of the cMRF in the control of disjunctive saccades in trained rhesus monkeys. Here, we describe a unique population of cMRF neurons that, during disjunctive saccades, display a burst of spikes that are highly correlated with vergence velocity. Importantly, these neurons show no increase in activity for either conjugate saccades or symmetric vergence. These neurons are termed saccade-vergence burst neurons (SVBNs) to maintain consistency with modeling studies that proposed that such a class of neuron exists to generate the enhanced vergence velocities observed during disjunctive saccades. Our results demonstrate the existence and characteristics of SVBNs whose activity is correlated solely with the vergence component of disjunctive saccades and, based on modeling studies, are critically involved in the generation of the disjunctive saccades required to view objects in our 3D world.


Sign in / Sign up

Export Citation Format

Share Document