Fundamental diagram of a one-dimensional cellular automaton model for pedestrian flow — the ASEP with shuffled update

Author(s):  
M. Wölki ◽  
A. Schadschneider ◽  
M. Schreckenberg
2017 ◽  
Vol 28 (05) ◽  
pp. 1750059 ◽  
Author(s):  
Zhijian Fu ◽  
Liang Xia ◽  
Hongtai Yang ◽  
Xiaobo Liu ◽  
Jian Ma ◽  
...  

Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.


2017 ◽  
Vol 28 (02) ◽  
pp. 1750016 ◽  
Author(s):  
Cheng-Jie Jin ◽  
Wei Wang ◽  
Rui Jiang ◽  
Li-Yun Dong

In this paper, we study the pedestrian flow with an Improved Two-Process (ITP) cellular automaton model, which is originally proposed by Blue and Adler. Simulations of pedestrian counterflow have been conducted, under both periodic and open boundary conditions. The lane formation phenomenon has been reproduced without using the place exchange rule. We also present and discuss the flow-density and velocity-density relationships of both uni-directional flow and counterflow. By the comparison with the Blue-Adler model, we find the ITP model has higher values of maximum flow, critical density and completely jammed density under different conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Qu ◽  
Mofeng Yang ◽  
Fan Yang ◽  
Bin Ran ◽  
Linchao Li

Traffic flow models are of vital significance to study the traffic system and reproduce typical traffic phenomena. In the process of establishing traffic flow models, human factors need to be considered particularly to enhance the performance of the models. Accordingly, a series of car-following models and cellular automaton models were proposed based on comprehensive consideration of various driving behaviors. Based on the comfortable driving (CD) model, this paper innovatively proposed an improved cellular automaton model incorporating impaired driver’s radical feature (RF). The impaired driver’s radical feature was added to the model with respect to three aspects, that is, desired speed, car-following behavior, and braking behavior. Empirical data obtained from a highway segment was used to initialize impaired driver’s radical feature distribution and calibrate the proposed model. Then, numerical simulations validated that the proposed improved model can well reproduce the traffic phenomena, as shown by the fundamental diagram and space-time diagram. Also, in low-density state, it can be found that the RF model is superior to the CD model in simulating the speed difference characteristics, where the average speed difference of adjacent vehicles for RF model is more consistent with reality. The result also discussed the potential impact of impaired drivers on rear-end collisions. It should be noted that this study is an early stage work to evaluate the existence of impaired driving behavior.


2004 ◽  
Vol 15 (03) ◽  
pp. 381-392 ◽  
Author(s):  
BIN JIA ◽  
RUI JIANG ◽  
QING-SONG WU

This paper extends a recently proposed single-lane cellular automaton model [Li et al., Phys. Rev. E64, 066128 (2001)], which considers the velocity effect of the preceding car, to two-lane traffic system. The traffic behaviors in both homogeneous system and inhomogeneous system are investigated. For homogeneous traffic, it is shown that the velocity effect enhances the maximum flux but does not change the qualitative properties of the fundamental diagram. Nevertheless, the qualitative changes of the lane changing frequency and congested pattern occur. In the inhomogeneous system, the honk effect is studied. It is found that the honk effect first strengthens then weakens with the increase of R, the ratio of slow cars to all cars.


2007 ◽  
Vol 18 (02) ◽  
pp. 267-279 ◽  
Author(s):  
YAO-MING YUAN ◽  
RUI JIANG ◽  
QING-SONG WU ◽  
RUILI WANG

This paper extends a cellular automaton model, named modified comfortable driving (MCD) model, to a two-lane roadway. A symmetric lane-changing rule set has been proposed (Set I). The fundamental diagram, the lane-changing frequency and space-time plots are presented. It is found that for the two-lane model, there exists a density range in which phase separation between synchronized flow and wide-moving jams on one lane, and between light synchronized flow and heavy synchronized flow on the other lane, can be maintained for quite long periods of time. In this density range, (i) the outflow from jams is synchronized flow; (ii) wide moving jams are sparse. These are consistent with the empirical observation. We also investigate a slightly different lane-changing rule Set II in which stopped vehicles are not allowed to change lane. It is shown that in this case, the phase separation, between free flow and wide moving jams on one lane and between free flow and heavy synchronized flow on the other lane, can be maintained for sufficiently long periods of time. Consequently, the flux is enhanced comparing to that of rule Set I.


2015 ◽  
Vol 64 (2) ◽  
pp. 024501
Author(s):  
Zhang Ning-Xi ◽  
Zhu Hui-Bing ◽  
Lin Heng ◽  
Huang Meng-Yuan

Sign in / Sign up

Export Citation Format

Share Document