open boundary
Recently Published Documents


TOTAL DOCUMENTS

848
(FIVE YEARS 148)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Vol 49 (4) ◽  
pp. 86-101
Author(s):  
T. O. Sheloput ◽  
V. I. Agoshkov

The problems of modeling hydrothermodynamics of particular sea and coastal areas are of current interest, since the results of this modeling are often used in many applications. One of the methods allowing to take into account open boundaries and bring the simulation results closer to real data is the variational assimilation of observational data. In this paper the following approach is considered: it is supposed that there are observational data at a certain moment in time; the problem is considered as an inverse problem, in which the functions of fluxes across the open boundary are treated as additional unknowns. Comparison of methods for reconstructing unknown functions in boundary conditions at an open boundary using sea level and velocity observational data in a number of numerical experiments for a region of a simple shape is carried out.


Author(s):  
John S. Van Dyke ◽  
Edwin Barnes ◽  
Sophia Economou ◽  
Rafael I Nepomechie

Abstract The open spin-1/2 XXZ spin chain with diagonal boundary magnetic fields is the paradigmatic example of a quantum integrable model with open boundary conditions. We formulate a quantum algorithm for preparing Bethe states of this model, corresponding to real solutions of the Bethe equations. The algorithm is probabilistic, with a success probability that decreases with the number of down spins. For a Bethe state of L spins with M down spins, which contains a total of (L M) 2M M! terms, the algorithm requires L + M2+ 2M qubits.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8322
Author(s):  
Ziwei Yi ◽  
Wenqi Lu ◽  
Xu Qu ◽  
Linheng Li ◽  
Peipei Mao ◽  
...  

Connected vehicle (CV) technologies are changing the form of traditional traffic models. In the CV driving environment, abundant and accurate information is available to vehicles, promoting the development of control strategies and models. Under these circumstances, this paper proposes a bidirectional vehicles information structure (BDVIS) by making use of the acceleration information of one preceding vehicle and one following vehicle to improve the car-following models. Then, we deduced the derived multiple vehicles information structure (DMVIS), including historical movement information of multiple vehicles, without the acceleration information. Next, the paper embeds the four kinds of basic car-following models into the framework to investigate the stability condition of two structures under the small perturbation of traffic flow and explored traffic response properties with different proportions of forward-looking or backward-looking terms. Under the open boundary condition, simulations on a single lane are conducted to validate the theoretical analysis. The results indicated that BDVIS and the DMVIS perform better than the original car-following model in improving the traffic flow stability, but that they have their own advantages for differently positioned vehicles in the platoon. Moreover, increasing the proportions of the preceding and following vehicles presents a benefit to stability, but if traffic is stable, an increase in any of the parameters would extend the influence time, which reveals that neither β1 or β2 is the biggest the best for the traffic.


Author(s):  
Gang-Feng Guo ◽  
Xi-Xi Bao ◽  
Lei Tan

Abstract The bulk boundary correspondence, which connects the topological invariant, the continuum band and energies under different boundary conditions, is the core concept in the non-Bloch band theory, in which the generalized Brillouin zone (GBZ), appearing as a closed loop generally, is a fundamental tool to rebuild it. In this work, it can be shown that the recovery of the open boundary energy spectrum by the continuum band remains unchanged even if the GBZ itself shrinks into a point. Contrastively, if the bizarreness of the GBZ occurs, the winding number will become illness. Namely, we find that the bulk boundary correspondence can still be established whereas the GBZ has singularities from the perspective of the energy, but not from the topological invariant. Meanwhile, regardless of the fact that the GBZ comes out with the closed loop, the bulk boundary correspondence can not be well characterized yet because of the ill-definition of the topological number. Here, the results obtained may be useful for improving the existing non-Bloch band theory.


Author(s):  
Robert Kosik ◽  
Johann Cervenka ◽  
Hans Kosina

AbstractWe discuss boundary value problems for the characteristic stationary von Neumann equation (stationary sigma equation) and the stationary Wigner equation in a single spatial dimension. The two equations are related by a Fourier transform in the non-spatial coordinate. In general, a solution to the characteristic equation does not produce a corresponding Wigner solution as the Fourier transform will not exist. Solution of the stationary Wigner equation on a shifted k-grid gives unphysical results. Results showing a negative differential resistance in IV-curves of resonant tunneling diodes using Frensley’s method are a numerical artefact from using upwinding on a coarse grid. We introduce the integro-differential sigma equation which avoids distributional parts at $$k=0$$ k = 0 in the Wigner transform. The Wigner equation for $$k=0$$ k = 0 represents an algebraic constraint needed to avoid poles in the solution at $$k=0$$ k = 0 . We impose the inverse Fourier transform of the integrability constraint in the integro-differential sigma equation. After a cutoff, we find that this gives fully homogeneous boundary conditions in the non-spatial coordinate which is overdetermined. Employing an absorbing potential layer double homogeneous boundary conditions are naturally fulfilled. Simulation results for resonant tunneling diodes from solving the constrained sigma equation in the least squares sense with an absorbing potential reproduce results from the quantum transmitting boundary with high accuracy. We discuss the zero bias case where also good agreement is found. In conclusion, we argue that properly formulated open boundary conditions have to be imposed on non-spatial boundaries in the sigma equation both in the stationary and the transient case. When solving the Wigner equation, an absorbing potential layer has to be employed.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012142
Author(s):  
David Parra-Guevara ◽  
Yuri N. Skiba

Abstract The advection-diffusion-reaction equation is used for describing the dispersion of a quasi-passive contaminant from industrial point sources in a limited area. The conditions established on the open boundary ensure that the problem is correct in the sense of Hadamard, that is, its solution exists, is unique, and is stable to initial perturbations. The Lagrange identity is used to construct the adjoint operator and formulate an adjoint problem. Equivalent direct and adjoint estimates are derived to assess the concentration of the pollutant at monitoring sites of the area. Formulas obtained on the basis of adjoint estimates are useful in analysing the sensitivity of the model to both variations in the intensity of pollution sources and variations in the initial distribution of the pollutant concentration in the area. New optimal emission control strategies based on using the adjoint estimates are developed in order to prevent violations of existing sanitary standards by timely reduction of emission rates of operating sources. Optimal control here lies in minimizing these reductions. In addition, this control is primarily aimed at reducing the intensity of emissions from sources that most pollute the monitoring site. Also, new methods are proposed for identifying the main parameters of an unknown point source that arose as a result of a dangerous incident (accident, explosion, etc.). These methods allow determining the location and intensity of a constant or non-stationary point source, as well as the moment of emission of a pollutant in the case of an instantaneous point source. This helps to quickly assess the scale of the incident and its consequences. Numerical results show the effectiveness of the methods.


2021 ◽  
Vol 925 (1) ◽  
pp. 012002
Author(s):  
I M D Raharja ◽  
I M Radjawane ◽  
I G Hendrawan

Abstract The Lombok Strait located between Bali Island and Lombok Island, Indonesia. Lombok Strait is complex area because influence by Indonesian Throughflow and influence by Tidal Current. For this case want to research about tidal current circulation and simulated using a three-dimensional baroclinic hydrodynamic numerical modelling method by Finite Volume Coastal Ocean Model (FVCOM). The study was simulated during 1-year on 2004, February. The model just simulated by barotropic condition and only influence by elevation tide in open boundary. The verification of ocean current (u and v components) from the model compare with observation data has a high coefficient of determination, i.e., 0.9, respectively. This verification result shows good agreement between model and observation data. For the result model, in the Lombok strait dominant influence by M2 semidiurnal component from Indian Ocean and K1 diurnal component from Pacific Ocean. The current circulation in the near surface dominant movement pattern from southern to northern. On the other hand, for the vertical current in 100 – 600 meter is different with near surface. The current movement from northern to southern. In the sill area have upwelling phenomenon in the north side of the sill and downwelling in south of the sill.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1343
Author(s):  
Riya Nandi ◽  
Uwe C. Täuber ◽  
Priyanka Priyanka

Motivated by the sidewise motions of dynein motors shown in experiments, we use a variant of the exclusion process to model the multistep dynamics of dyneins on a cylinder with open ends. Due to the varied step sizes of the particles in a quasi-two-dimensional topology, we observe the emergence of a novel phase diagram depending on the various load conditions. Under high-load conditions, our numerical findings yield results similar to the TASEP model with the presence of all three standard TASEP phases, namely the low-density (LD), high-density (HD), and maximal-current (MC) phases. However, for medium- to low-load conditions, for all chosen influx and outflux rates, we only observe the LD and HD phases, and the maximal-current phase disappears. Further, we also measure the dynamics for a single dynein particle which is logarithmically slower than a TASEP particle with a shorter waiting time. Our results also confirm experimental observations of the dwell time distribution: The dwell time distribution for dyneins is exponential in less crowded conditions, whereas a double exponential emerges under overcrowded conditions.


2021 ◽  
Author(s):  
Li Zhang ◽  
Qing Chen ◽  
Hongbin Li ◽  
Zemin Qu

Sign in / Sign up

Export Citation Format

Share Document