The GA-Based Bayes-Optimal Feature Extraction Procedure Applied to the Supervised Pattern Recognition

Author(s):  
Marek Kurzynski ◽  
Aleksander Rewak
2014 ◽  
Vol 937 ◽  
pp. 351-356 ◽  
Author(s):  
Shi Yin Qiu ◽  
Rui Bo Yuan

The wavelet packet decomposition can be used to extract the frequency band containing bearing fault feature, because the fault signal can be decomposed into different frequency bands by using the wavelet packet decomposition, that is to say the optimal wavelet packet decomposition node needs to be found. A method applying the average Euclidean distance to find the optimal wavelet packet decomposition node was presented. First of all, the bearing fault signals were decomposed into three layers wavelet coefficients by which the bearing fault signals were reconstructed. The peak values extracted from the reconstructing signal spectrum constructed a feature space. Then, the minimum average Euclidean distance calculated from the feature space indicated the optimal wavelet packet node. The optimal feature space could be constructed by the feature points extracted from the signals reconstructed by the optimal wavelet packet nodes. Finally, the optimal feature space was used for the K-means clustering. The feature extraction and pattern recognition test of the four kinds of bearing conditions under four kinds of rotation speeds was detailed. The test results show this method, which can extract the bearing fault feature efficiently and make the fault feature space have the lowest within-class scatter, wons a high pattern recognition accuracy.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 114
Author(s):  
Tiziano Zarra ◽  
Mark Gino K. Galang ◽  
Florencio C. Ballesteros ◽  
Vincenzo Belgiorno ◽  
Vincenzo Naddeo

Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools for which the primary application is the generation of odour metrics that are indicators of odour as perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of the acquired data, and the validation of the correlation of the odour metric are key topics to control in order to ensure a robust and reliable measurement. The research presents and discusses the use of different pattern recognition and feature extraction techniques in the elaboration and effectiveness of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and peak period from the original response curve, in collaboration with Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANN) as a pattern recognition algorithm, were investigated. Laboratory analyses were performed with real odour samples collected in a complex industrial plant, using an advanced smart IOMS. The results demonstrate the influence of the choice of method on the quality of the OCMM produced. The peak period in combination with the Artificial Neural Network (ANN) highlighted the best combination on the basis of high classification rates. The paper provides information to develop a solution to optimize the performance of IOMS.


2014 ◽  
Vol 608-609 ◽  
pp. 459-467 ◽  
Author(s):  
Xiao Yu Gu

The paper researches a recognition algorithm of modulation signal and modulation modes. The modulation modes to be recognized include 2ASK, 2FSK, 2PSK, 4ASK, 4FSK and 4PSK modulation. There are two methods recognizing modulation modes of digital signal, method based on decision theory and pattern-recognition method based on feature extraction. The method based on decision theory is not suitable for recognition with multiple modulation modes. The core of pattern recognition based on feature extraction is selection of feature parameters. So the paper uses the feature parameters with simple calculation, easy to be implemented and high recognition rate as the core. The extraction of feature parameters is based on instant feature of modulation signal after Hilbert transformation.


1996 ◽  
Vol 35 (6) ◽  
pp. 834-840 ◽  
Author(s):  
A. Rosemary Tate ◽  
Des Watson ◽  
Stephen Eglen ◽  
Theodores N. Arvanitis ◽  
E. Louise Thomas ◽  
...  

Author(s):  
Shivali Parkhedkar ◽  
Shaveri Vairagade ◽  
Vishakha Sakharkar ◽  
Bharti Khurpe ◽  
Arpita Pikalmunde ◽  
...  

In our proposed work we will accept the challenges of recognizing the words and we will work to win the challenge. The handwritten document is scanned using a scanner. The image of the scanned document is processed victimization the program. Each character in the word is isolated. Then the individual isolated character is subjected to “Feature Extraction” by the Gabor Feature. Extracted features are passed through KNN classifier. Finally we get the Recognized word. Character recognition is a process by which computer recognizes handwritten characters and turns them into a format which a user can understand. Computer primarily based pattern recognition may be a method that involves many sub process. In today’s surroundings character recognition has gained ton of concentration with in the field of pattern recognition. Handwritten character recognition is beneficial in cheque process in banks, form processing systems and many more. Character recognition is one in all the favored and difficult space in analysis. In future, character recognition creates paperless environment. The novelty of this approach is to achieve better accuracy, reduced computational time for recognition of handwritten characters. The proposed method extracts the geometric features of the character contour. These features are based on the basic line types that forms the character skeleton. The system offers a feature vector as its output. The feature vectors so generated from a training set, were then used to train a pattern recognition engine based on Neural Networks so that the system can be benchmarked. The algorithm proposed concentrates on the same. It extracts totally different line varieties that forms a specific character. It conjointly also concentrates on the point options of constant. The feature extraction technique explained was tested using a Neural Network which was trained with the feature vectors obtained from the proposed method.


Sign in / Sign up

Export Citation Format

Share Document