Convective Heat Transfer from Exposed Flat Horizontal Surface in Outdoorconditions at Low Wind Speeds: An Application to Flat Plate Solar Collector

Author(s):  
Suresh Kumar ◽  
S. C. Mullick
2014 ◽  
Vol 90 ◽  
pp. 364-370 ◽  
Author(s):  
Rehena Nasrin ◽  
Salma Parvin ◽  
M.A. Alim

Author(s):  
Jorge Saavedra ◽  
Venkat Athmanathan ◽  
Guillermo Paniagua ◽  
Terrence Meyer ◽  
Doug Straub ◽  
...  

Abstract The aerothermal characterization of film cooled geometries is traditionally performed at reduced temperature conditions, which then requires a debatable procedure to scale the convective heat transfer performance to engine conditions. This paper describes an alternative engine-scalable approach, based on Discrete Green’s Functions (DGF) to evaluate the convective heat flux along film cooled geometries. The DGF method relies on the determination of a sensitivity matrix that accounts for the convective heat transfer propagation across the different elements in the domain. To characterize a given test article, the surface is discretized in multiple elements that are independently exposed to perturbations in heat flux to retrieve the sensitivity of adjacent elements, exploiting the linearized superposition. The local heat transfer augmentation on each segment of the domain is normalized by the exposed thermal conditions and the given heat input. The resulting DGF matrix becomes independent from the thermal boundary conditions, and the heat flux measurements can be scaled to any conditions given that Reynolds number, Mach number, and temperature ratios are maintained. The procedure is applied to two different geometries, a cantilever flat plate and a film cooled flat plate with a 30 degree 0.125” cylindrical injection orifice with length-to-diameter ratio of 6. First, a numerical procedure is applied based on conjugate 3D Unsteady Reynolds Averaged Navier Stokes simulations to assess the applicability and accuracy of this approach. Finally, experiments performed on a flat plate geometry are described to validate the method and its applicability. Wall-mounted thermocouples are used to monitor the surface temperature evolution, while a 10 kHz burst-mode laser is used to generate heat flux addition on each of the discretized elements of the DGF sensitivity matrix.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1508
Author(s):  
Nagesh Babu Balam ◽  
Tabish Alam ◽  
Akhilesh Gupta ◽  
Paolo Blecich

The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.


Sign in / Sign up

Export Citation Format

Share Document