Performance of Cogeneration System Incorporating Gas Engine Driven Heat Pump

Author(s):  
Yingbai Xie ◽  
Liyong Lun ◽  
Zhun Yu ◽  
Xuedong Zhang
2010 ◽  
Vol 130 (5) ◽  
pp. 646-654 ◽  
Author(s):  
Miao Hong ◽  
Satoshi Horie ◽  
Yushi Miura ◽  
Tosifumi Ise ◽  
Yuki Sato ◽  
...  

2011 ◽  
Vol 88 (8) ◽  
pp. 2677-2684 ◽  
Author(s):  
Aysegul Gungor ◽  
Zafer Erbay ◽  
Arif Hepbasli
Keyword(s):  

1991 ◽  
Author(s):  
Patrick Badgley ◽  
Dave McNulty ◽  
Melvin Woods
Keyword(s):  

Author(s):  
Lin Fu ◽  
Xiling Zhao ◽  
Shigang Zhang ◽  
Yi Jiang ◽  
Hui Li ◽  
...  

It is well known that combined heating and power (CHP) generation permits the energy of the fuel to be more efficiently than electric and thermal separate generation. The paper deals with natural gas CHP system with a 70kWe gas-powered internal combustion engine (ICE), which has been set up at the Tsinghua University energy-saving building, in Beijing, China. The system is composed of an ICE, a flue gas heat exchanger and other heat exchangers. The conventional system’s characteristics is that the gas engine generates power on-site, and the exhaust of the gas engine is recovered by a high temperature flue gas-water heat exchanger, and the jacket water heat is recovered by a water-water heat exchanger to supply heat for district heating system. In order to improve the system’s performance, an innovative system with absorption heat pump is adopted. The exhaust of the gas engine drives an absorption heat pump to recover the flue gas sensible heat and further recover the latent heat, so the outlet temperature of the exhaust could be lowered to 50°C. In this paper, the electrical and thermal performance of the innovative system were tested and compared with conventional cogeneration systems. The test and comparison results show that the innovative CHP system could increase the heat utilization efficiency 10% in winter. All the results provide important insight into CHP performance characteristics and could be valuable references for CHP system’s improvements.


2015 ◽  
Vol 50 ◽  
pp. 114-126 ◽  
Author(s):  
Wenxiu Jiang ◽  
Liang Cai ◽  
Jieyue Wang ◽  
Weiwei Deng ◽  
Xiaosong Zhang

1993 ◽  
Vol 59 (559) ◽  
pp. 807-813
Author(s):  
Koichi Ito ◽  
Ryohei Yokoyama ◽  
Takashi Shiba ◽  
Hidekazu Hayashi

1981 ◽  
Vol 9 (4) ◽  
pp. 218-218
Author(s):  
O. Heiburg ◽  
W. Lohsträter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document