scholarly journals Approaches for the Development of Antiviral Compounds: The Case of Hepatitis C Virus

Author(s):  
Raymond F. Schinazi ◽  
Steven J. Coats ◽  
Leda C. Bassit ◽  
Johan Lennerstrand ◽  
James H. Nettles ◽  
...  
2005 ◽  
Vol 79 (21) ◽  
pp. 13778-13793 ◽  
Author(s):  
Marc P. Windisch ◽  
Michael Frese ◽  
Artur Kaul ◽  
Martin Trippler ◽  
Volker Lohmann ◽  
...  

ABSTRACT The Hepatitis C virus (HCV), a member of the family Flaviviridae, is a major cause of chronic liver disease. Patients are currently treated with alpha interferon (IFN-α) that is given alone or in combination with ribavirin. Unfortunately, this treatment is ineffective in eliminating the virus in a large proportion of individuals. IFN-induced antiviral activities have been intensively studied in the HCV replicon system. It was found that both IFN-α and IFN-γ inhibit HCV replicons, but the underlying mechanisms have not yet been identified. Of note is that nearly all of these studies were performed with the human hepatoma cell line Huh-7. Here, we report that genotypes 1b and 2a replicons also replicate in the human hepatoblastoma cell line HuH6. Similar to what has been described for Huh-7 cells, we observed that efficient HCV replication in HuH6 cells depends on the presence of cell culture-adaptive mutations and the permissiveness of the host cell. However, three major differences exist: in HuH6 cells, viral replication is (i) independent from ongoing cell proliferation, (ii) less sensitive to certain antiviral compounds, and (iii) highly resistant to IFN-γ. The latter is not due to a general defect in IFN signaling, as IFN-γ induces the nuclear translocation of signal transducer and activator of transcription 1 (STAT1), the enhanced transcription of several IFN-regulated genes, and the inhibition of unrelated viruses such as influenza A virus and Semliki Forest virus. Taken together, the results establish HuH6 replicon cells as a valuable tool for IFN studies and for the evaluation of antiviral compounds.


2007 ◽  
Vol 81 (8) ◽  
pp. 3693-3703 ◽  
Author(s):  
Donna M. Tscherne ◽  
Matthew J. Evans ◽  
Thomas von Hahn ◽  
Christopher T. Jones ◽  
Zania Stamataki ◽  
...  

ABSTRACT Superinfection exclusion is the ability of an established virus infection to interfere with infection by a second virus. In this study, we found that Huh-7.5 cells acutely infected with hepatitis C virus (HCV) genotype 2a (chimeric strain J6/JFH) and cells harboring HCV genotype 1a, 1b, or 2a full-length or subgenomic replicons were resistant to infection with cell culture-produced HCV (HCVcc). Replicon-containing cells became permissive for HCVcc infection after treatment with an HCV-specific protease inhibitor. With the exception of cells harboring a J6/JFH-FLneo replicon, infected or replicon-containing cells were permissive for HCV pseudoparticle (HCVpp) entry, demonstrating a postentry superinfection block downstream of primary translation. The surprising resistance of J6/JFH-FLneo replicon-containing cells to HCVpp infection suggested a defect in virus entry. This block was due to reduced expression of the HCV coreceptor CD81. Further analyses indicated that J6/JFH may be toxic for cells expressing high levels of CD81, thus selecting for a CD81low population. CD81 down regulation was not observed in acutely infected cells, suggesting that this may not be a general mechanism of HCV superinfection exclusion. Thus, HCV establishes superinfection exclusion at a postentry step, and this effect is reversible by treatment of infected cells with antiviral compounds.


1997 ◽  
Vol 96 (2) ◽  
pp. 427-428 ◽  
Author(s):  
FREDERICO SILVESTRI ◽  
GIOVANNI BARILLARI ◽  
RENATO FANIN ◽  
FLAVIA SALMASO ◽  
LAURA INFANTI ◽  
...  

2000 ◽  
Vol 15 (5 (Suppl.)) ◽  
pp. E83-E90 ◽  
Author(s):  
John M Kaldor ◽  
Gregory J Dore ◽  
Patricia Kl Correll

2001 ◽  
Vol 120 (5) ◽  
pp. A552-A552
Author(s):  
M CURRY ◽  
T DEIGNAN ◽  
P COSTELLO ◽  
L GOLDENMASON ◽  
M DUFFY ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A570-A570
Author(s):  
T TANAKA ◽  
K ASAO ◽  
K INOUE ◽  
K KOHARATSUKIYAMA ◽  
M KOHARA

Sign in / Sign up

Export Citation Format

Share Document