The Time Complexity of Constraint Satisfaction

Author(s):  
Patrick Traxler
2015 ◽  
Vol 52 ◽  
pp. 203-234 ◽  
Author(s):  
Ronald De Haan ◽  
Iyad Kanj ◽  
Stefan Szeider

Not all NP-complete problems share the same practical hardness with respect to exact computation. Whereas some NP-complete problems are amenable to efficient computational methods, others are yet to show any such sign. It becomes a major challenge to develop a theoretical framework that is more fine-grained than the theory of NP-completeness, and that can explain the distinction between the exact complexities of various NP-complete problems. This distinction is highly relevant for constraint satisfaction problems under natural restrictions, where various shades of hardness can be observed in practice. Acknowledging the NP-hardness of such problems, one has to look beyond polynomial time computation. The theory of subexponential-time complexity provides such a framework, and has been enjoying increasing popularity in complexity theory. An instance of the constraint satisfaction problem with n variables over a domain of d values can be solved by brute-force in dn steps (omitting a polynomial factor). In this paper we study the existence of subexponential-time algorithms, that is, algorithms running in do(n) steps, for various natural restrictions of the constraint satisfaction problem. We consider both the constraint satisfaction problem in which all the constraints are given extensionally as tables, and that in which all the constraints are given intensionally in the form of global constraints. We provide tight characterizations of the subexponential-time complexity of the aforementioned problems with respect to several natural structural parameters, which allows us to draw a detailed landscape of the subexponential-time complexity of the constraint satisfaction problem. Our analysis provides fundamental results indicating whether and when one can significantly improve on the brute-force search approach for solving the constraint satisfaction problem.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-32
Author(s):  
Peter Jonsson ◽  
Victor Lagerkvist ◽  
Biman Roy

We study the constraint satisfaction problem (CSP) parameterized by a constraint language Γ (CSPΓ) and how the choice of Γ affects its worst-case time complexity. Under the exponential-time hypothesis (ETH), we rule out the existence of subexponential algorithms for finite-domain NP-complete CSPΓ problems. This extends to certain infinite-domain CSPs and structurally restricted problems. For CSPs with finite domain D and where all unary relations are available, we identify a relation S D such that the time complexity of the NP-complete problem CSP({ S D }) is a lower bound for all NP-complete CSPs of this kind. We also prove that the time complexity of CSP({ S D }) strictly decreases when |D| increases (unless the ETH is false) and provide stronger complexity results in the special case when |D|=3.


Author(s):  
Suresha .M ◽  
. Sandeep

Local features are of great importance in computer vision. It performs feature detection and feature matching are two important tasks. In this paper concentrates on the problem of recognition of birds using local features. Investigation summarizes the local features SURF, FAST and HARRIS against blurred and illumination images. FAST and Harris corner algorithm have given less accuracy for blurred images. The SURF algorithm gives best result for blurred image because its identify strongest local features and time complexity is less and experimental demonstration shows that SURF algorithm is robust for blurred images and the FAST algorithms is suitable for images with illumination.


Sign in / Sign up

Export Citation Format

Share Document