Linear Time Planarity Testing and Embedding of Strongly Connected Cyclic Level Graphs

Author(s):  
Christian Bachmaier ◽  
Wolfgang Brunner
2021 ◽  
pp. STOC19-128-STOC19-155
Author(s):  
Aaron Bernstein ◽  
Maximilian Probst Gutenberg ◽  
Christian Wulff-Nilsen

2012 ◽  
Vol Vol. 14 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Zbigniew Lonc ◽  
Pawel Naroski

Discrete Algorithms International audience By an Euler walk in a 3-uniform hypergraph H we mean an alternating sequence v(0), epsilon(1), v(1), epsilon(2), v(2), ... , v(m-1), epsilon(m), v(m) of vertices and edges in H such that each edge of H appears in this sequence exactly once and v(i-1); v(i) is an element of epsilon(i), v(i-1) not equal v(i), for every i = 1, 2, ... , m. This concept is a natural extension of the graph theoretic notion of an Euler walk to the case of 3-uniform hypergraphs. We say that a 3-uniform hypergraph H is strongly connected if it has no isolated vertices and for each two edges e and f in H there is a sequence of edges starting with e and ending with f such that each two consecutive edges in this sequence have two vertices in common. In this paper we give an algorithm that constructs an Euler walk in a strongly connected 3-uniform hypergraph (it is known that such a walk in such a hypergraph always exists). The algorithm runs in time O(m), where m is the number of edges in the input hypergraph.


Algorithms ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 81 ◽  
Author(s):  
Fabian Gärtner ◽  
Peter F. Stadler

Superbubbles are a class of induced subgraphs in digraphs that play an essential role in assembly algorithms for high-throughput sequencing data. They are connected with the remainder of the host digraph by a single entrance and a single exit vertex. Linear-time algorithms for the enumeration superbubbles recently have become available. Current approaches require the decomposition of the input digraph into strongly-connected components, which are then analyzed separately. In principle, a single depth-first search could be used, provided one can guarantee that the root of the depth-first search (DFS)-tree is not itself located in the interior or the exit point of a superbubble. Here, we describe a linear-time algorithm to determine suitable roots for a DFS-forest that is guaranteed to identify the superbubbles in a digraph correctly. In addition to the advantages of a more straightforward implementation, we observe a nearly three-fold gain in performance on real-world datasets. We present a reference implementation of the new algorithm that accepts many commonly-used input formats for digraphs. It is available as open source from github.


2007 ◽  
Vol 37 (1) ◽  
pp. 257-281 ◽  
Author(s):  
Carter T. Butts

A common problem in sociology, psychology, biology, geography, and management science is the comparison of dyadic relational structures (i.e., graphs). Where these structures are formed on a common set of elements, a natural question that arises is whether there is a tendency for elements that are strongly connected in one set of structures to be more—or less—strongly connected within another set. We may ask, for instance, whether there is a correspondence between golf games and business deals, trade and warfare, or spatial proximity and genetic similarity. In each case, the data for such comparisons may be continuous or discrete, and multiple relations may be involved simultaneously (e.g., when comparing multiple measures of international trade volume with multiple types of political interactions). We propose here an exponential family of permutation models that is suitable for inferring the direction and strength of association among dyadic relational structures. A linear-time algorithm is shown for MCMC simulation of model draws, as is the use of simulated draws for maximum likelihood estimation (MCMC-MLE) and/or estimation of Monte Carlo standard errors. We also provide an easily performed maximum pseudo-likelihood estimation procedure for the permutation model family, which provides a reasonable means of generating seed models for the MCMC-MLE procedure. Use of the modeling framework is demonstrated via an application involving relationships among managers in a high-tech firm.


1999 ◽  
Vol 19 (5) ◽  
pp. 560-569 ◽  
Author(s):  
Kathleen Schmidt

General linear time-invariant compartmental systems were examined to determine which systems meet the conditions necessary for application of the spectral analysis technique to the sum of the concentrations in all compartments. Spectral analysis can be used to characterize the reversible and irreversible components of the system and to estimate the minimum number of compartments, but it applies only to systems in which the measured data can be expressed as a positively weighted sum of convolution integrals of the input function with an exponential function that has real-valued nonpositive decay constants. The conditions are met by compartmental systems that are strongly connected, have exchange of material with the environment confined to a single compartment, and do not contain cycles, i.e., there is no possibility for material to pass from one compartment through two or more compartments back to the initial compartment. Certain noncyclic systems with traps, systems with cycles that obey a specified loop condition, and noninterconnected collections of such systems also meet the conditions. Dynamic positron emission tomographic data obtained after injection of a radiotracer, the kinetics of which can be described by any model in the class of models identified here, can be appropriately analyzed with the spectral analysis technique.


Sign in / Sign up

Export Citation Format

Share Document