Optimistic-Pessimistic Q-Learning Algorithm for Multi-Agent Systems

Author(s):  
Natalia Akchurina
2012 ◽  
Vol 566 ◽  
pp. 572-579
Author(s):  
Abdolkarim Niazi ◽  
Norizah Redzuan ◽  
Raja Ishak Raja Hamzah ◽  
Sara Esfandiari

In this paper, a new algorithm based on case base reasoning and reinforcement learning (RL) is proposed to increase the convergence rate of the reinforcement learning algorithms. RL algorithms are very useful for solving wide variety decision problems when their models are not available and they must make decision correctly in every state of system, such as multi agent systems, artificial control systems, robotic, tool condition monitoring and etc. In the propose method, we investigate how making improved action selection in reinforcement learning (RL) algorithm. In the proposed method, the new combined model using case base reasoning systems and a new optimized function is proposed to select the action, which led to an increase in algorithms based on Q-learning. The algorithm mentioned was used for solving the problem of cooperative Markov’s games as one of the models of Markov based multi-agent systems. The results of experiments Indicated that the proposed algorithms perform better than the existing algorithms in terms of speed and accuracy of reaching the optimal policy.


Respuestas ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 53-61
Author(s):  
David Luviano Cruz ◽  
Francesco José García Luna ◽  
Luis Asunción Pérez Domínguez

This paper presents a hybrid control proposal for multi-agent systems, where the advantages of the reinforcement learning and nonparametric functions are exploited. A modified version of the Q-learning algorithm is used which will provide data training for a Kernel, this approach will provide a sub optimal set of actions to be used by the agents. The proposed algorithm is experimentally tested in a path generation task in an unknown environment for mobile robots.


2015 ◽  
Vol 11 (3) ◽  
pp. 30-44
Author(s):  
Mounira Bouzahzah ◽  
Ramdane Maamri

Through this paper, the authors propose a new approach to get fault tolerant multi-agent systems using learning agents. Generally, the exceptions in the multi-agent system are divided into two main groups: private exceptions that are treated directly by the agents and global exceptions that combine all unexpected exceptions that need handlers to be solved. The proposed approach solves the problem of these global exceptions using learning agents. This work uses a formal model called hierarchical plans to model the activities of the system's agents in order to facilitate the exception detection and to model the communication with the learning agent. This latter uses a modified version of the Q Learning Algorithm in order to choose which handler can be used to solve an exceptions. The paper tries to give a new direction in the field of fault tolerance in multi-agent systems by using learning agents, the proposed solution makes it possible to adapt the handler used in case of failure within the context changes and treat repeated exceptions using learning agent experiences.


Automatica ◽  
2021 ◽  
Vol 128 ◽  
pp. 109576
Author(s):  
Tao Feng ◽  
Jilie Zhang ◽  
Yin Tong ◽  
Huaguang Zhang

Author(s):  
Stefan Bosse

Ubiquitous computing and The Internet-of-Things (IoT) grow rapidly in today's life and evolving to Self-organizing systems (SoS). A unified and scalable information processing and communication methodology is required. In this work, mobile agents are used to merge the IoT with Mobile and Cloud environments seamless. A portable and scalable Agent Processing Platform (APP) provides an enabling technology that is central for the deployment of Multi-Agent Systems (MAS) in strong heterogeneous networks including the Internet. A large-scale use-case deploying Multi-agent systems in a distributed heterogeneous seismic sensor and geodetic network is used to demonstrate the suitability of the MAS and platform approach. The MAS is used for earthquake monitoring based on a new incremental distributed learning algorithm applied to seismic station data, which can be extended by ubiquitous sensing devices like smart phones. Different (mobile) agents perform sensor sensing, aggregation, local learning and prediction, global voting and decision making, and the application.


Author(s):  
Stefan Bosse

Ubiquitous computing and The Internet-of-Things (IoT) grow rapidly in today's life and evolving to Self-organizing systems (SoS). A unified and scalable information processing and communication methodology is required. In this work, mobile agents are used to merge the IoT with Mobile and Cloud environments seamless. A portable and scalable Agent Processing Platform (APP) provides an enabling technology that is central for the deployment of Multi-Agent Systems (MAS) in strong heterogeneous networks including the Internet. A large-scale use-case deploying Multi-agent systems in a distributed heterogeneous seismic sensor and geodetic network is used to demonstrate the suitability of the MAS and platform approach. The MAS is used for earthquake monitoring based on a new incremental distributed learning algorithm applied to seismic station data, which can be extended by ubiquitous sensing devices like smart phones. Different (mobile) agents perform sensor sensing, aggregation, local learning and prediction, global voting and decision making, and the application.


Sign in / Sign up

Export Citation Format

Share Document