Observation of Elliptically Polarized High Harmonic Emission from Molecules Driven by Linearly Polarized Light

Author(s):  
Xibin Zhou ◽  
Robynne Lock ◽  
Nick Wagner ◽  
Wen Li ◽  
Henry C. Kapteyn ◽  
...  
2016 ◽  
Vol 2 (2) ◽  
pp. e1501333 ◽  
Author(s):  
Cong Chen ◽  
Zhensheng Tao ◽  
Carlos Hernández-García ◽  
Piotr Matyba ◽  
Adra Carr ◽  
...  

Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.


2009 ◽  
Vol 102 (7) ◽  
Author(s):  
Xibin Zhou ◽  
Robynne Lock ◽  
Nick Wagner ◽  
Wen Li ◽  
Henry C. Kapteyn ◽  
...  

1987 ◽  
Vol 93 ◽  
Author(s):  
John A. Woollam ◽  
Paul G. Snyder ◽  
M. C. Rost

In the most commonly used form of ellipsometry, a monochromatic collimated linearly polarized light beam is directed at an angle φ to the normal of a sample under study. The specularly reflected beam is, in general, elliptically polarized, and the state of polarization is analyzed using a second polarizer and photodetector.1 Figure 1 shows a schematic of the rotating analyzer automated spectroscopic ellipsometer used at the University of Nebraska. The angle of incidence can be set over a wide range of angles, with a precision and repeatability of ±0.01 angular degrees. A computer controls the monochromator, the azimuth of a stepper motor driven polarizer, a shutter, and the digitization of the detector signal. There are several other schemes used for acquiring ellipsometric data, and these are discussed in several sources.


2021 ◽  
Author(s):  
Dacheng Wang ◽  
Song Sun ◽  
Zheng Feng ◽  
Wei Tan

Abstract We demonstrate terahertz dielectric metasurfaces with anisotropic multipoles within the framework of the generalized Huygens principle, in which the interference among these multipoles achieves giant phase shift with broadened bandwidth and high transmission coefficients. More importantly, owing to the anisotropic design, various phase delays between π/2 and 3π/2 are obtained, which convert the incident linearly polarized terahertz wave into right/left-handed circularly polarized light, elliptically polarized light and cross polarized light. Both simulation and experimental results verify complete terahertz polarization control with the ellipticity ranging from 1 to -1, which paves a way for polarization–related applications of terahertz meta-devices.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Dacheng Wang ◽  
Song Sun ◽  
Zheng Feng ◽  
Wei Tan

AbstractWe demonstrate terahertz dielectric metasurfaces with anisotropic multipoles within the framework of the generalized Huygens principle, in which the interference among these multipoles achieves giant phase shift with broadened bandwidth and high transmission coefficients. More importantly, owing to the anisotropic design, various phase delays between π/2 and 3π/2 are obtained, which convert the incident linearly polarized terahertz wave into right/left-handed circularly polarized light, elliptically polarized light and cross-polarized light. Both simulation and experimental results verify complete terahertz polarization control with the ellipticity ranging from 1 to − 1, which paves a way for polarization-related applications of terahertz meta-devices.


1979 ◽  
Vol 7 (3) ◽  
pp. 166-170 ◽  
Author(s):  
P. A. Jaanimagi ◽  
G. D. Enright ◽  
M. C. Richardson

Sign in / Sign up

Export Citation Format

Share Document