Qualitative Analysis of the Crank-Nicolson Method for the Heat Conduction Equation

Author(s):  
István Faragó
2020 ◽  
Vol 5 ◽  
pp. 36
Author(s):  
S. Abbas ◽  
A. A. Khan ◽  
B. Shakia

We study a comparison of serial and parallel solution of 2D-parabolic heat conduction equation using a Crank-Nicolson method with an Alternating Direction Implicit (ADI) scheme. The two-dimensional Heat equation is applied on a thin rectangular aluminum sheet. The forward difference formula is used for time and an averaged second order central difference formula for the derivatives in space to develop the Crank-Nicolson method. FORTRAN serial codes and parallel algorithms using OpenMP are used. Thomas tridigonal algorithm and parallel cyclic reduction methods are employed to solve the tridigonal matrix generated while solving heat equation. This paper emphasize on the run time of both algorithms and their difference. The results are compared and evaluated by creating GNU-plots (Command-line driven graphing utility).


2016 ◽  
Vol 15 (1) ◽  
pp. 96
Author(s):  
E. Iglesias-Rodríguez ◽  
M. E. Cruz ◽  
J. Bravo-Castillero ◽  
R. Guinovart-Díaz ◽  
R. Rodríguez-Ramos ◽  
...  

Heterogeneous media with multiple spatial scales are finding increased importance in engineering. An example might be a large scale, otherwise homogeneous medium filled with dispersed small-scale particles that form aggregate structures at an intermediate scale. The objective in this paper is to formulate the strong-form Fourier heat conduction equation for such media using the method of reiterated homogenization. The phases are assumed to have a perfect thermal contact at the interface. The ratio of two successive length scales of the medium is a constant small parameter ε. The method is an up-scaling procedure that writes the temperature field as an asymptotic multiple-scale expansion in powers of the small parameter ε . The technique leads to two pairs of local and homogenized equations, linked by effective coefficients. In this manner the medium behavior at the smallest scales is seen to affect the macroscale behavior, which is the main interest in engineering. To facilitate the physical understanding of the formulation, an analytical solution is obtained for the heat conduction equation in a functionally graded material (FGM). The approach presented here may serve as a basis for future efforts to numerically compute effective properties of heterogeneous media with multiple spatial scales.


1980 ◽  
Vol 102 (1) ◽  
pp. 121-125 ◽  
Author(s):  
S. K. Fraley ◽  
T. J. Hoffman ◽  
P. N. Stevens

A new approach in the use of Monte Carlo to solve heat conduction problems is developed using a transport equation approximation to the heat conduction equation. A variety of problems is analyzed with this method and their solutions are compared to those obtained with analytical techniques. This Monte Carlo approach appears to be limited to the calculation of temperatures at specific points rather than temperature distributions. The method is applicable to the solution of multimedia problems with no inherent limitations as to the geometric complexity of the problem.


Sign in / Sign up

Export Citation Format

Share Document