On the Security of Padding-Based Encryption Schemes – or – Why We Cannot Prove OAEP Secure in the Standard Model

Author(s):  
Eike Kiltz ◽  
Krzysztof Pietrzak
2020 ◽  
Vol 63 (12) ◽  
pp. 1904-1914
Author(s):  
Janaka Alawatugoda

Abstract Over the years, security against adaptively chosen-ciphertext attacks (CCA2) is considered as the strongest security definition for public-key encryption schemes. With the uprise of side-channel attacks, new security definitions are proposed, addressing leakage of secret keys together with the standard CCA2 definition. Among the new security definitions, security against continuous and after-the-fact leakage-resilient CCA2 can be considered as the strongest security definition, which is called as security against (continuous) adaptively chosen-ciphertext leakage attacks (continuous CCLA2). In this paper, we present a construction of a public-key encryption scheme, namely LR-PKE, which satisfies the aforementioned security definition. The security of our public-key encryption scheme is proven in the standard model, under decision BDH assumption. Thus, we emphasize that our public-key encryption scheme LR-PKE is (continuous) CCLA2-secure in the standard model. For our construction of LR-PKE, we have used a strong one-time signature scheme and a leakage-resilient refreshing protocol as underlying building blocks. The leakage bound is $0.15n\log p -1$ bits per leakage query, for a security parameter $k$ and a statistical security parameter $n$, such that $\log p \geq k$ and $n$ is a function of $k$. It is possible to see that LR-PKE is efficient enough to be used for real-world usage.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuyan Guo ◽  
Jiguo Li ◽  
Mingming Jiang ◽  
Lei Yu ◽  
Shimin Wei

The security for many certificate-based encryption schemes was considered under the ideal condition, where the attackers rarely have the secret state for the solutions. However, with a side-channel attack, attackers can obtain partial secret values of the schemes. In order to make the scheme more practical, the security model for the certificate-based encryption which is resilient to continual leakage is first formalized. The attackers in the security model are permitted to get some secret information continuously through the side-channel attack. Based on the certificate-based key encapsulation scheme, a novel certificate-based encryption scheme is proposed, which is resilient to the continual leakage. In the standard model, the new scheme we propose is proved to be secure under the decisional truncated q-augmented bilinear Diffie–Hellman exponent hard problem and the decisional 1-bilinear Diffie–Hellman inversion hard problem. Additionally, the new scheme can resist the chosen-ciphertext attack. Moreover, a comparison is performed with other related schemes, where the proposed solution further considers the continual leakage-resilient property and exhibits less computation cost.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


Sign in / Sign up

Export Citation Format

Share Document