information storage
Recently Published Documents


TOTAL DOCUMENTS

1926
(FIVE YEARS 482)

H-INDEX

69
(FIVE YEARS 13)

2022 ◽  
Vol 22 (2) ◽  
pp. 1-20
Author(s):  
Bharat S. Rawal ◽  
Poongodi M. ◽  
Gunasekaran Manogaran ◽  
Mounir Hamdi

Block chain provides an innovative solution to information storage, transaction execution, security, and trust building in an open environment. The block chain is technological progress for cyber security and cryptography, with efficiency-related cases varying in smart grids, smart contracts, over the IoT, etc. The movement to exchange data on a server has massively increased with the introduction of the Internet of Things. Hence, in this research, Splitting of proxy re-encryption method (Split-PRE) has been suggested based on the IoT to improve security and privacy in a private block chain. This study proposes a block chain-based proxy re-encryption program to resolve both the trust and scalability problems and to simplify the transactions. After encryption, the system saves the Internet of Things data in a distributed cloud. The framework offers dynamic, smart contracts between the sensor and the device user without the intervention of a trustworthy third party to exchange the captured IoT data. It uses an efficient proxy re-encryption system, which provides the owner and the person existing in the smart contract to see the data. The experimental outcomes show that the proposed approach enhances the efficiency, security, privacy, and feasibility of the system when compared to other existing methods.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 646
Author(s):  
Peng Jiang ◽  
Zhipeng Li ◽  
Wei Lu ◽  
Yi Ma ◽  
Wenhuai Tian

Developing rare-earth doped oxysulfide phosphors with diverse morphologies has significant value in many research fields such as in displays, medical diagnosis, and information storage. All of the time, phosphors with spherical morphology have been developed in most of the related literatures. Herein, by simply adjusting the pH values of the reaction solution, Gd2O2S:Tb3+ phosphors with various morphologies (sphere-like, sheet-like, cuboid-like, flat square-like, rod-like) were synthesized. The XRD patterns showed that phosphors with all morphologies are pure hexagonal phase of Gd2O2S. The atomic resolution structural analysis by transmission electron microscopy revealed the crystal growth model of the phosphors with different morphology. With the morphological change, the band gap energy of Gd2O2S:Tb3+ crystal changed from 3.76 eV to 4.28 eV, followed by different luminescence performance. The samples with sphere-like and cuboid-like microstructures exhibit stronger cathodoluminescence intensity than commercial product by comparison. Moreover, luminescence of Gd2O2S:Tb3+ phosphors have different emission performance excited by UV light radiation and an electron beam, which when excited by UV light is biased towards yellow, and while excited by an electron beam is biased towards cyan. This finding provides a simple but effective method to achieve rare-earth doped oxysulfide phosphors with diversified and tunable luminescence properties through morphology control.


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Alex El-Shaikh ◽  
Marius Welzel ◽  
Dominik Heider ◽  
Bernhard Seeger

ABSTRACT Due to the rapid cost decline of synthesizing and sequencing deoxyribonucleic acid (DNA), high information density, and its durability of up to centuries, utilizing DNA as an information storage medium has received the attention of many scientists. State-of-the-art DNA storage systems exploit the high capacity of DNA and enable random access (predominantly random reads) by primers, which serve as unique identifiers for directly accessing data. However, primers come with a significant limitation regarding the maximum available number per DNA library. The number of different primers within a library is typically very small (e.g. ≈10). We propose a method to overcome this deficiency and present a general-purpose technique for addressing and directly accessing thousands to potentially millions of different data objects within the same DNA pool. Our approach utilizes a fountain code, sophisticated probe design, and microarray technologies. A key component is locality-sensitive hashing, making checks for dissimilarity among such a large number of probes and data objects feasible.


2022 ◽  
Author(s):  
Wen Jiang ◽  
Denis Feliers ◽  
W. Jim Zheng ◽  
Fangyuan Zhang ◽  
Degeng Wang

Gene expression is time-consuming, and the delay from transcription activation to produced proteins is sequentially longer from bacteria to yeast and to humans. How human cells bypass the delay and attain operational efficiency, i.e., quick proteomic response to signals, is not well understood. The computer has endured the same system latency issue due to much slower information retrieval (hard drive (HD) to memory and to CPU) than CPU execution, and mitigated it via efficient memory management, namely, the spatiotemporal locality principles that control specialized user functions and the permanent caching of core system functions, the operating system (OS) kernel. Thus, in this study, we unified gene expression and HD-memory-CPU information flow as instances of the Shannon information theory, both supporting the respective system operations and consisting of three components: information storage, the execution/decoding step, and the channel for the dynamic storage-to-execution information flow; the gene expression machinery and their regulators, and the OS kernel, were deemed as the respective channels. This abstraction prompted a multi-omic comparative analysis, generating experimental evidence that transcriptome regulation shares the computer memory management principles. First, the temporal locality principle explains the mRNA stabilization-by-translation regulatory mechanism and controls specialized cellular functions. Second, the caching principle explains cytoplasmic mRNA sequestration and the defiance of the locality principle by highly sequestered mRNAs. Third, strikingly, in both systems, the caching principle controls the information channels; similar to permanent caching of OS kernel, basic translation/transcription machinery and their regulators are the top most sequestered mRNAs. Summarily, the locality and the caching principles differentially regulate specialized functions and core system functions, respectively, integrating the complexity of transcriptome regulation with cellular operational latency mitigation.


2022 ◽  
pp. 2105108
Author(s):  
Yawei Liu ◽  
Kelu Zhao ◽  
Yubin Ren ◽  
Sikang Wan ◽  
Chenjing Yang ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Violeta-Maria Caragea ◽  
Denise Manahan-Vaughan

Dopamine is a key factor in the enablement of cognition and hippocampal information processing. Its action in the hippocampus is mediated by D1/D5 and D2-like (D2, D3, D4) receptors. While D1/D5-receptors are well recognized as strong modulators of hippocampal synaptic plasticity and information storage, much less is known about the role of D2-like receptors (D2R) in these processes. Here, we explored to what extent D2R contribute to synaptic plasticity and cumulative spatial memory derived from semantic and episodic-like information storage. In freely behaving adult rats, we also assessed to what extent short and long-term forms of synaptic plasticity are influenced by pharmacological activation or blockade of D2R. Antagonism of D2R by means of intracerebral treatment with remoxipride, completely prevented the expression of both short-term (<1 h) and long-term potentiation (>4 h), as well as the expression of short-term depression (STD, <1 h) in the hippocampal CA1 region. Scrutiny of involvement of D2R in spatial learning revealed that D2R-antagonism prevented retention of a semantic spatial memory task, and also significantly impaired retention of recent spatiotemporal aspects of an episodic-like memory task. Taken together, these findings indicate that D2R are required for bidirectional synaptic plasticity in the hippocampal CA1 region. Furthermore, they are critically involved in enabling cumulative and episodic-like forms of spatial learning.


Author(s):  
Yang Li ◽  
Hua Pang

Abstract The understanding of the creation and annihilation dynamics of a magnetic skyrmion is significant due to its potential applications in information storage and spintronics. Although there have been extensive investigations on the annihilation of isolated skyrmion, topological annihilation in periodic skyrmion lattice is a more complex process. We report a micromagnetic simulation study about the annihilation process of a two-dimensional skyrmion triangular lattice triggered by a uniform field HREV of comparable size to the skyrmion, which is opposite to the direction of the background field, revealing two annihilation modes. When the HREV center is within the range of a skyrmion, the neighboring skyrmions annihilate in situ, while the center is between adjacent skyrmions, anti-skyrmion is induced in the interstitial region. Both mechanisms tend to experience the intermediate topological vortex or antivortex structure, and the spin system undergoes a long period of relaxation to reach a stable state after the topological charge is stabilized. Our results present a local annihilation scheme that is easy to achieve in a 2D skyrmion lattice and highlight the role of interaction between skyrmions in the transformation between different kinds of topological defects.


Author(s):  
Xilin Ma ◽  
Peng Feng ◽  
Yajie Wang ◽  
Songsong Ding ◽  
Songlu Tian ◽  
...  

Color-tunable long persistent luminescence (LPL) phosphors are more strongly desired for intelligent anti-counterfeiting and information storage compared with single color types.


Author(s):  
Bingwen Zhang ◽  
Jingjing Jiang ◽  
Wenji Wang ◽  
Qin Tu ◽  
Ruijin Yu ◽  
...  

Stimuli-responsive organic materials with aggregation-induced emission (AIE) characteristics have become a research hot spot in recent years due to their promising applications in information storage, organic light-emitting semiconductors (OLEDs) and...


2022 ◽  
Vol 130 (1) ◽  
pp. 33
Author(s):  
Kieran M. Smith ◽  
Michael F. Reid ◽  
Jon-Paul R. Wells

We report Zeeman infra-red spectroscopy of electronic-nuclear levels of 5I8 →5I7 transitions of Ho3+ in the C4v(F−) centre in CaF2 with the magnetic field along the ⟨111⟩ direction of the crystal. Transitions to the lowest 5I7 state, an isolated electronic doublet, and the next group of states, a pseudo-quadruplet consisting of a doublet and two nearby singlets, exhibit strongly non-linear Zeeman splittings and intensity variations. Simulated spectra based upon a crystal-field analysis give an excellent approximation to the data, illustrating the strong predictive ability of the parametrised crystal-field approach. Anti-crossings in the hyperfine splittings, the basis of quantum information storage in rare-earth doped insulating dielectrics, are also predicted.


Sign in / Sign up

Export Citation Format

Share Document