Knowledge Based Information Retrieval with an Adaptive Hypermedia System

Author(s):  
Francisca Grimón ◽  
Josep Maria Monguet ◽  
Jordi Ojeda
Author(s):  
Ndengabaganizi Tonny James ◽  
Rajkumar Kannan

It has been long time many people have realized the importance of archiving and finding information. With the advent of computers, it became possible to store large amounts of information; and finding useful information from such collections became a necessity. Over the last forty years, Information Retrieval (IR) has matured considerably. Several IR systems are used on an everyday basis by a wide variety of users. Information retrieval (IR) is generally concerned with the searching and retrieving of knowledge-based information from database. In this paper, we will discuss about the various models and techniques and for information retrieval. We are also providing the overview of traditional IR models.


2021 ◽  
pp. 1-4
Author(s):  
Mathieu D'Aquin ◽  
Stefan Dietze

The 29th ACM International Conference on Information and Knowledge Management (CIKM) was held online from the 19 th to the 23 rd of October 2020. CIKM is an annual computer science conference, focused on research at the intersection of information retrieval, machine learning, databases as well as semantic and knowledge-based technologies. Since it was first held in the United States in 1992, 28 conferences have been hosted in 9 countries around the world.


Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.


The work presented in this chapter lies within learner modeling in an adaptive educational system construed as a computational modeling of the learner. All actions of the learner in a learning situation on an adaptive hypermedia system are not limited to valid or invalid actions (true and false), but they are a set of actions that characterize the learning path of formation. Thus, one cannot represent the information from the system of each learner using relative data. It requires putting the work in a probabilistic context due to the changes in the learner model information during formation. In this chapter, the authors propose to use Bayesian networks as a probabilistic framework to resolve the issue of dynamic management and update of the learner model. The experiments and results presented in this work are arguments in favor of the hypothesis and can also promote reusing the modeling obtained through different systems and similar modeling situations.


Sign in / Sign up

Export Citation Format

Share Document