Stability and Hopf Bifurcation for a First-Order Delay Differential Equation with Distributed Delay

Author(s):  
Fabien Crauste
Author(s):  
K. C. Panda ◽  
R. N. Rath ◽  
S. K. Rath

In this paper, we obtain sufficient conditions for oscillation and nonoscillation of the solutions of the neutral delay differential equation yt−∑j=1kpjtyrjt′+qtGygt−utHyht=ft, where pj and rj for each j and q,u,G,H,g,h, and f are all continuous functions and q≥0,u≥0,ht<t,gt<t, and rjt<t for each j. Further, each rjt, gt, and ht⟶∞ as t⟶∞. This paper improves and generalizes some known results.


Author(s):  
A. Yusnaeni ◽  
Kasbawati Kasbawati ◽  
Toaha Syamsuddin

AbstractIn this paper, we study a mathematical model of an immune response system consisting of a number of immune cells that work together to protect the human body from invading tumor cells. The delay differential equation is used to model the immune system caused by a natural delay in the activation process of immune cells. Analytical studies are focused on finding conditions in which the system undergoes changes in stability near a tumor-free steady-state solution. We found that the existence of a tumor-free steady-state solution was warranted when the number of activated effector cells was sufficiently high. By considering the lag of stimulation of helper cell production as the bifurcation parameter, a critical lag is obtained that determines the threshold of the stability change of the tumor-free steady state. It is also leading the system undergoes a Hopf bifurcation to periodic solutions at the tumor-free steady-state solution.Keywords: tumor–immune system; delay differential equation; transcendental function; Hopf bifurcation. AbstrakDalam makalah ini, dikaji model matematika dari sistem respon imun yang terdiri dari sejumlah sel imun yang bekerja sama untuk melindungi tubuh manusia dari invasi sel tumor. Persamaan diferensial tunda digunakan untuk memodelkan sistem kekebalan yang disebabkan oleh keterlambatan alami dalam proses aktivasi sel-sel imun. Studi analitik difokuskan untuk menemukan kondisi di mana sistem mengalami perubahan stabilitas di sekitar solusi kesetimbangan bebas tumor. Diperoleh bahwa solusi kesetimbangan bebas tumor dijamin ada ketika jumlah sel efektor yang diaktifkan cukup tinggi. Dengan mempertimbangkan tundaan stimulasi produksi sel helper sebagai parameter bifurkasi, didapatkan lag kritis yang menentukan ambang batas perubahan stabilitas dari solusi kesetimbangan bebas tumor. Parameter tersebut juga mengakibatkan sistem mengalami percabangan Hopf untuk solusi periodik pada solusi kesetimbangan bebas tumor.Kata kunci: sistem tumor–imun; persamaan differensial tundaan; fungsi transedental; bifurkasi Hopf.


2013 ◽  
Vol 785-786 ◽  
pp. 1418-1422
Author(s):  
Ai Gao

In this paper, we provide a partition of the roots of a class of transcendental equation by using τ-D decomposition ,where τ>0,a>0,b<0 and the coefficient b is fixed.According to the partition, one can determine the stability domain of the equilibrium and get a Hopf bifurcation diagram that can provide the Hopf bifurcation curves in the-parameter space, for one dimension delay differential equation .


Author(s):  
P. Auger ◽  
Arnaud Ducrot

The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.


2008 ◽  
Vol 03 (01n02) ◽  
pp. 125-133 ◽  
Author(s):  
JORGE C. LUCERO

This article analyzes a mathematical model for some aeroelastic oscillators in physiology, based on a previous representation for the vocal folds at phonation. The model characterizes the oscillation as superficial wave propagating through the tissues in the direction of the flow, and consists of a functional differential equation with advanced and delay arguments. The analysis shows that the oscillation occurs at a Hopf bifurcation, at which the energy absorbed from the flow overcomes the energy dissipated in the tissues. The bifurcation value of the flow pressure increases linearly with the tissue damping and the oscillation frequency. Also, it is minimum when the phase delay of the superficial wave to travel along the tissues is π, and increases indefinitely when the delay tends to 0 and to 2π.


In this article the authors established sufficient condition for the first order delay differential equation in the form , ( ) where , = and is a non negative piecewise continuous function. Some interesting examples are provided to illustrate the results. Keywords: Oscillation, delay differential equation and bounded. AMS Subject Classification 2010: 39A10 and 39A12.


Sign in / Sign up

Export Citation Format

Share Document