scholarly journals Size-Change Termination, Monotonicity Constraints and Ranking Functions

Author(s):  
Amir M. Ben-Amram
2011 ◽  
Vol 11 (4-5) ◽  
pp. 503-520 ◽  
Author(s):  
MICHAEL CODISH ◽  
IGOR GONOPOLSKIY ◽  
AMIR M. BEN-AMRAM ◽  
CARSTEN FUHS ◽  
JÜRGEN GIESL

AbstractWe describe an algorithm for proving termination of programs abstracted to systems of monotonicity constraints in the integer domain. Monotonicity constraints are a nontrivial extension of the well-known size-change termination method. While deciding termination for systems of monotonicity constraints is PSPACE complete, we focus on a well-defined and significant subset, which we call MCNP (for “monotonicity constraints in NP”), designed to be amenable to a SAT-based solution. Our technique is based on the search for a special type of ranking function defined in terms of bounded differences between multisets of integer values. We describe the application of our approach as the back end for the termination analysis of Java Bytecode. At the front end, systems of monotonicity constraints are obtained by abstracting information, using two different termination analyzers:AProVEandCOSTA. Preliminary results reveal that our approach provides a good trade-off between precision and cost of analysis.


1998 ◽  
Vol 38 (6) ◽  
pp. 327-335
Author(s):  
Yasunori Kozuki ◽  
Yoshihiko Hosoi ◽  
Hitoshi Murakami ◽  
Katuhiro Kawamoto

In order to clarify the origin and behavior of suspended particulate matter (SPM) in a tidal river, variation of SPM in a tidal river was investigated with regard to its size and constituents. SPM was separated into three groups according to size. Change of contents of titanium and organic substances of each group of SPM was examined. SPM which was discharged by run-off was transported with decomposition and sedimentation in a tidal river. Concentration of SPM with a particle size greater than 0.45 μm increased due to resuspension in a tidal river. Origin of SPM with a size of less than 0.45 μm at upstream areas was from natural soil and most of such SPM which had been transported settled near a river mouth. It was determined from examination of the CN ratio and the ratio of the number of attached bacteria to free bacteria that SPM with a size greater than 1.0 μm at upstream areas was decomposing intensively. At the downstream areas, SPM with a size of less than 0.45 μm came from the sea. SPM with particle size greater than 1.0 μm consisted of plankton and substances which were decomposed sufficiently while flowing.


2017 ◽  
Author(s):  
Nora Soto ◽  
◽  
Yurena Yanes ◽  
David Lubell
Keyword(s):  

2017 ◽  
Author(s):  
Zoe Hughes ◽  
◽  
Kenneth G. Johnson ◽  
Rachel Belben ◽  
Chris Hughes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document