monotonicity constraints
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

Algorithms ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 345
Author(s):  
Martin von Kurnatowski ◽  
Jochen Schmid ◽  
Patrick Link ◽  
Rebekka Zache ◽  
Lukas Morand ◽  
...  

Systematic decision making in engineering requires appropriate models. In this article, we introduce a regression method for enhancing the predictive power of a model by exploiting expert knowledge in the form of shape constraints, or more specifically, monotonicity constraints. Incorporating such information is particularly useful when the available datasets are small or do not cover the entire input space, as is often the case in manufacturing applications. We set up the regression subject to the considered monotonicity constraints as a semi-infinite optimization problem, and propose an adaptive solution algorithm. The method is applicable in multiple dimensions and can be extended to more general shape constraints. It was tested and validated on two real-world manufacturing processes, namely, laser glass bending and press hardening of sheet metal. It was found that the resulting models both complied well with the expert’s monotonicity knowledge and predicted the training data accurately. The suggested approach led to lower root-mean-squared errors than comparative methods from the literature for the sparse datasets considered in this work.


Author(s):  
Masato Kimura ◽  
Matteo Negri

AbstractWe consider the gradient flow of a quadratic non-autonomous energy under monotonicity constraints. First, we provide a notion of weak solution, inspired by the theory of curves of maximal slope, and then we prove existence (employing time-discrete schemes with different implementations of the constraint), uniqueness, power and energy identity, comparison principle and continuous dependence. As a by-product, we show that the energy identity gives a selection criterion for the (non-unique) evolutions obtained by other notions of solutions. Finally, we show that for autonomous energies the evolution obtained with the monotonicity constraint actually coincides with the evolution obtained by replacing the constraint with a fixed obstacle, given by the initial datum.


2021 ◽  
Vol 439 ◽  
pp. 106-121
Author(s):  
Sergio González ◽  
Salvador García ◽  
Sheng-Tun Li ◽  
Robert John ◽  
Francisco Herrera

2020 ◽  
Author(s):  
Kazuhiro Yamaguchi ◽  
Jonathan Templin

Diagnostic classification models (DCM) are restricted latent class models with a set of cross-class equality constraints and additional monotonicity constraints on their item parameters, both of which are needed to ensure the meaning of classes and model parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian Markov chain Monte Carlo estimation method for general DCMs with monotonicity constraints. A simulation study was conducted to evaluate parameter recovery of the algorithm which showed accurate estimation of model parameters. An analysis of the 2000 Programme for International Student Assessment reading assessment data using this algorithm was also conducted.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Wang ◽  
Dylan S. Small ◽  
Michael O. Harhay

Abstract Background The population attributable fraction (PAF) is the fraction of disease cases in a sample that can be attributed to an exposure. Estimating the PAF often involves the estimation of the probability of having the disease given the exposure while adjusting for confounders. In many settings, the exposure can interact with confounders. Additionally, the exposure may have a monotone effect on the probability of having the disease, and this effect is not necessarily linear. Methods We develop a semiparametric approach for estimating the probability of having the disease and, consequently, for estimating the PAF, controlling for the interaction between the exposure and a confounder. We use a tensor product of univariate B-splines to model the interaction under the monotonicity constraint. The model fitting procedure is formulated as a quadratic programming problem, and, thus, can be easily solved using standard optimization packages. We conduct simulations to compare the performance of the developed approach with the conventional B-splines approach without the monotonicity constraint, and with the logistic regression approach. To illustrate our method, we estimate the PAF of hopelessness and depression for suicidal ideation among elderly depressed patients. Results The proposed estimator exhibited better performance than the other two approaches in the simulation settings we tried. The estimated PAF attributable to hopelessness is 67.99% with 95% confidence interval: 42.10% to 97.42%, and is 22.36% with 95% confidence interval: 12.77% to 56.49% due to depression. Conclusions The developed approach is easy to implement and supports flexible modeling of possible non-linear relationships between a disease and an exposure of interest.


Sign in / Sign up

Export Citation Format

Share Document