A Neighborhood Search Method for Link-Based Tag Clustering

Author(s):  
Jianwei Cui ◽  
Pei Li ◽  
Hongyan Liu ◽  
Jun He ◽  
Xiaoyong Du
1998 ◽  
Vol 6 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Colin R. Reeves ◽  
Takeshi Yamada

In a previous paper, a simple genetic algorithm (GA) was developed for finding (approximately) the minimum makespan of the n-job, m-machine permutation flowshop sequencing problem (PFSP). The performance of the algorithm was comparable to that of a naive neighborhood search technique and a proven simulated annealing algorithm. However, recent results have demonstrated the superiority of a tabu search method in solving the PFSP. In this paper, we reconsider the implementation of a GA for this problem and show that by taking into account the features of the landscape generated by the operators used, we are able to improve its performance significantly.


2021 ◽  
Author(s):  
Matjaž Krnc ◽  
Nevena Pivač

Graph searching is one of the simplest and most widely used tools in graph algorithms. Every graph search method is defined using some partic-ular selection rule, and the analysis of the corre-sponding vertex orderings can aid greatly in de-vising algorithms, writing proofs of correctness, or recognition of various graph families. We study graphs where the sets of vertex order-ings produced by two di˙erent search methods coincide. We characterise such graph families for ten pairs from the best-known set of graph searches: Breadth First Search (BFS), Depth First Search (DFS), Lexicographic Breadth First Search (LexBFS) and Lexicographic Depth First Search (LexDFS), and Maximal Neighborhood Search (MNS).


Sign in / Sign up

Export Citation Format

Share Document