Genetic Algorithms, Path Relinking, and the Flowshop Sequencing Problem

1998 ◽  
Vol 6 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Colin R. Reeves ◽  
Takeshi Yamada

In a previous paper, a simple genetic algorithm (GA) was developed for finding (approximately) the minimum makespan of the n-job, m-machine permutation flowshop sequencing problem (PFSP). The performance of the algorithm was comparable to that of a naive neighborhood search technique and a proven simulated annealing algorithm. However, recent results have demonstrated the superiority of a tabu search method in solving the PFSP. In this paper, we reconsider the implementation of a GA for this problem and show that by taking into account the features of the landscape generated by the operators used, we are able to improve its performance significantly.

2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Rong-Chang Chen ◽  
Jeanne Chen ◽  
Tung-Shou Chen ◽  
Chien-Che Huang ◽  
Li-Chiu Chen

The permutation flowshop scheduling problem (PFSP) is an important issue in the manufacturing industry. The objective of this study is to minimize the total completion time of scheduling for minimum makespan. Although the hybrid genetic algorithms are popular for resolving PFSP, their local search methods were compromised by the local optimum which has poorer solutions. This study proposed a new hybrid genetic algorithm for PFSP which makes use of the extensive neighborhood search method. For evaluating the performance, results of this study were compared against other state-of-the-art hybrid genetic algorithms. The comparisons showed that the proposed algorithm outperformed the other algorithms. A significant 50% test instances achieved the known optimal solutions. The proposed algorithm is simple and easy to implement. It can be extended easily to apply to similar combinatorial optimization problems.


2021 ◽  
Vol 9 (3) ◽  
pp. 157-166
Author(s):  
Arif Amrulloh ◽  
Enny Itje Sela

Scheduling courses in higher education often face problems, such as the clashes of teachers' schedules, rooms, and students' schedules. This study proposes course scheduling optimization using genetic algorithms and taboo search. The genetic algorithm produces the best generation of chromosomes composed of lecturer, day, and hour genes. The Tabu search method is used for the lecture rooms division. Scheduling is carried out for the Informatics faculty with four study programs, 65 lecturers, 93 courses, 265 lecturer assignments, and 65 classes. The process of generating 265 schedules took 561 seconds without any scheduling clashes. The genetic algorithms and taboo searches can process quite many course schedules faster than the manual method.


2014 ◽  
Vol 3 (1) ◽  
pp. 65-82 ◽  
Author(s):  
Victor Kurbatsky ◽  
Denis Sidorov ◽  
Nikita Tomin ◽  
Vadim Spiryaev

The problem of forecasting state variables of electric power system is studied. The paper suggests data-driven adaptive approach based on hybrid-genetic algorithm which combines the advantages of genetic algorithm and simulated annealing algorithm. The proposed method has two stages. At the first stage the input signal is decomposed into orthogonal basis functions based on the Hilbert-Huang transform. The genetic algorithm and simulated annealing algorithm are applied to optimal training of the artificial neural network and support vector machine at the second stage. The results of applying the developed approach for the short-term forecasts of active power flows in the electric networks are presented. The best efficiency of proposed approach is demonstrated on real retrospective data of active power flow forecast using the hybrid-genetic support vector machine algorithm.


2020 ◽  
Vol 40 (23) ◽  
pp. 2314002
Author(s):  
尤阳 You Yang ◽  
漆云凤 Qi Yunfeng ◽  
沈辉 Shen Hui ◽  
邹星星 Zou Xingxing ◽  
何兵 He Bing ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yongrong Wu ◽  
Yijie Zhou ◽  
Yanming Feng ◽  
Yutian Xiao ◽  
Shaojie He ◽  
...  

This paper proposes two algorithms for signal timing optimization of single intersections, namely, microbial genetic algorithm and simulated annealing algorithm. The basis of the optimization of these two algorithms is the original timing scheme of the SCATS, and the optimized parameters are the average delay of vehicles and the capacity. Experiments verify that these two algorithms are, respectively, improved by 67.47% and 46.88%, based on the original timing scheme.


2020 ◽  
Vol 80 (5) ◽  
pp. 910-931
Author(s):  
Anthony W. Raborn ◽  
Walter L. Leite ◽  
Katerina M. Marcoulides

This study compares automated methods to develop short forms of psychometric scales. Obtaining a short form that has both adequate internal structure and strong validity with respect to relationships with other variables is difficult with traditional methods of short-form development. Metaheuristic algorithms can select items for short forms while optimizing on several validity criteria, such as adequate model fit, composite reliability, and relationship to external variables. Using a Monte Carlo simulation study, this study compared existing implementations of the ant colony optimization, Tabu search, and genetic algorithm to select short forms of scales, as well as a new implementation of the simulated annealing algorithm. Selection of short forms of scales with unidimensional, multidimensional, and bifactor structure were evaluated, with and without model misspecification and/or an external variable. The results showed that when the confirmatory factor analysis model of the full form of the scale was correctly specified or had only minor misspecification, the four algorithms produced short forms with good psychometric qualities that maintained the desired factor structure of the full scale. Major model misspecification resulted in worse performance for all algorithms, but including an external variable only had minor effects on results. The simulated annealing algorithm showed the best overall performance as well as robustness to model misspecification, while the genetic algorithm produced short forms with worse fit than the other algorithms under conditions with model misspecification.


Sign in / Sign up

Export Citation Format

Share Document